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Thank You!
Thank you for getting this book!  This book contains examples of different
probability problems worked using Bayes Theorem.  It is intended to be direct
and to give easy to follow example problems that you can duplicate, without
getting bogged down in a lot of theory or specific probability functions.

Most of the problems have been solved using Excel, which is a useful tool for
these types of probability problems.

If you want to help us produce more material like this, then please leave a
positive review for this book on Amazon.   It really does make a difference!

http://amzn.to/1VhosHM


Your Free Gift

As a way of saying thank you for your purchase, I’m offering this free
Bayes Theorem cheat sheet that’s exclusive to my readers.

This cheat sheet contains information about the Bayes Theorem and key
terminology, 6 easy steps to solve a Bayes Theorem Problem, and an example
to follow.   This is a PDF document that I encourage you to print, save, and
share.  You can download it by going here

http://www.fairlynerdy.com/bayes-theorem-cheat-sheets/

 

http://www.fairlynerdy.com/bayes-theorem-cheat-sheets/
http://www.fairlynerdy.com/bayes-theorem-cheat-sheets/


Bayes Theorem Overview

Bayes theorem describes the probability of an event based on other
information that might be relevant.  Essentially, you are estimating a
probability, but then updating that estimate based on other things that you know.

This is something that you already do every day in real life.  For instance, if
your friend is supposed to pick you up to go out to dinner, you might have a
mental estimate of if she will be on time, be 15 minutes late, or be a half hour
late.  That would be your starting probability.   If you then look outside and see
that there are 8 inches of new snow on the ground, you would update your
probabilities to account for the new data.

Bayes theorem is a formal way of doing that.

This book is designed to give you an intuitive understanding of how to use
Bayes Theorem.  It starts with the definition of what Bayes Theorem is, but the
focus of the book is on providing examples that you can follow and duplicate. 
Most of the examples are calculated in Excel, which is useful for updating
probability if you have dozens or hundreds of data points to roll in.   You can
download all the Excel examples, for Free, here
http://www.fairlynerdy.com/bayes-theorem-examples/
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Bayes Theorem Definition & Intuitive Explanation
 

The equation for Bayes Theorem is

Where
A & B are events
P(A) and P(B) are the probabilities of A and B without regard for each
other
P(A|B) is the conditional probability, the probability of A given that B is
true
P(B|A) is the probability of B given that A is true

 
 
The equation is somewhat complicated, but using the equation really isn’t. 
What it ends up being is just a normalized weighted average, given an
assumption.    One of the goals of this book is to develop your intuition for
these problems, so we will be discussing many of the problems from the
normalized weight average perspective.
 

 



To solve all of these problems we will follow these steps

1. Determine what we want the probability of, and what we are observing
2. Estimate initial probabilities for all of the possible answers
3. For each of the initial possible answers, assume it is true and calculate

the probability of getting our observation with that possibility being true
4. Multiply the initial probabilities (Step 2) by the probabilities based on

our observation (Step 3) for each of the initial possible answers
5. Normalize the results  (divide the each probability by the sum of the total

probabilities so that the new total probability is 1)
6. Repeat Steps 2-5 over and over for each new observation

 
 



Example 1 - Simple Example With Dice
 
Suppose that your friend has 3 dice.  One has 4 sides, one has 6 sides, and one
has 8 sides.  He draws one die at random, rolls it one time without showing
you, and reports the result as having rolled a 2.   How would you calculate the
probability that the die was the 4 sided die, the probability for the 6 sided die,
and the probability for the 8 sided die
 

Step 1 – Determine desired probability, and what is being observed

What we want is the probability of three different possibilities, 4 sided, 6
sided, or 8 sided.   What we observe is the number that is rolled.

 

Step 2 – Estimate initial probabilities

Since we started with 3 dice, and we think the die that was rolled was
randomly chosen, we will assume that the initial probability that the die was 4
sided is 1/3, the initial probability that the die was 6 sided is 1/3, and the
initial probability that the die was 8 sided is 1/3.   Essentially, this step is the
same as if our friend had pulled the die out of the bag, held it in a closed hand
without rolling it, and we had to bet on which die it was with no other
information.

 

Step 3 – For each initial possibility, calculate the chance of getting our
observation

Our observation was that a 2 was rolled.   If we assume that our friend had the
4 sided die, the odds that die would roll a 2 is 1/4.   If we assume that our
friend had the 6 sided die, the odds that die would roll a 2 is 1/6.    If we
assume that our friend had the 8 sided die, the odds that die would roll a 2 is
1/8

 

Step 4 – Get the weighted average, multiply initial probabilities by each



probability based on the assumption.

For the 4 sided die,  initially it had a 1/3 chance and there was a 1/4
chance it would roll a 2, so the total probability our friend would draw
the 4 sided die, and roll a 2 is 1 / 12
For the 6 sided die, initially it had a 1/3 chance and there was a 1/6
chance it would roll a 2, so the total probability our friend would draw
the 6 sided die, and roll a 2 is 1 / 18
For the 8 sided die, initially it had a 1/3 chance and there was a 1/8
change it would roll a 2, so the total probability that our friend would
draw the 8 sided die, and roll a 2 is 1 / 24

 

Step 5 – Normalize the Results

The total probability of the picking one of the 3 dice, and rolling a 2 is 1/12 +
1/18 + 1/24 = 13 / 72.   So we know that the odds that we selected any of the
dice and rolled a 2 are 13 / 72.  That number is less than 1 because the odds of
rolling a 2 are less than 1.   However we know that we have already rolled the
2.  So we need to divide the odds of each die by 13 / 72 so that sum of all the
odds for all the die are 1.  That process is known as Normalizing.

Normalizing each of the dice we find the probability that that die is the one we
selected

4 sided die =  (1/12)   /   (13/72)  =   (1 * 72) / (12 * 13)  =     6/13
6 sided die =  (1/18)   /   (13/72)  =   (1 * 72) / (18 * 13)  =     4/13
8 sided die =  (1/24)   /   (13/72)  =   (1 * 72) / (24 * 13)  =     3/13

And that’s the answer.

When we started the problem, we assumed that each die had a 33.3% chance
that it was the one selected from the bag.  After rolling 1 number, and rolling a
2, we determined that the odds the 4 die was the one selected was 46.1%,  the
odds the 6 die was the one selected was 30.8%, and the odds the 8 die was the
one selected was 23.1%.  

If we had more die rolls we could incorporate those, using the new
percentages as our starting percentages and really refine the numbers



 

If you have a single data point of information to update your initial
assumptions, then putting everything in one horizontal table is a concise format
that works really well

 

Some things to take note of on this example

There are a few points that we didn’t hit in this example, but are important to
know

When we calculated the chance of getting a roll for each die, the odds
were 1 divided by the number on the die.  But that is true only because
we rolled a 2, which is a number that could be rolled by any of the dice. 
The true odds for each roll are 1 divided by the number of the die IF the
number of the roll is less than or equal to the number on the die. 
Otherwise the odds for that die are zero.   For instance, if we had rolled
a 7, then step 3 would show the odds of getting that result with the 4
sided die was zero, the odds with the 6 sided die was zero, and the odds
with the 8 sided die was 1 / 8.  When we normalized that result in Step
5, then obviously there would be a 100% chance that the die that rolled
the 7 was the 8 sided die
For this problem we worked with fractions, because they are fairly clean
for only 3 possible dice, and only 1 roll.  For most problems with more
possibilities and more data, fractions become a pain and it is easier to
work in decimals.
It is usually just as easy to find the probability for all possibilities as for
a single possibility.  i.e. If you want to find the probability of the 4 sided
die for this problem, you might as well solve for the 6 and 8 sided dice
at the same time, since you have to do that anyway to get the total
probability



 

What is in the rest of the book

At this point you may feel you have a good grasp of Bayes’ theorem, and
wonder if it is worth reading the rest of the book.  And it’s a good question
because overall Bayes’ theorem is very simple, so if you want to put the book
down and kick back with some coffee I can’t blame you.   For the most part,
everything that is more complicated than what we just covered falls into only a
few different buckets, either

Making the initial probabilities more complicated to cover cases where
you have detailed initial information or
Making the conditional probabilities more complicated to cover real life
scenarios that are more complicated than rolling a dice or flipping a
coin.  (Like say, estimating the number of goals scored in a soccer game)

For the most part this book is going to avoid doing either of those and focus on
more easy to understand, intuitive examples.   None-the-less there are some
interesting intricacies that we’ll cover that may not be obvious from the first
example such as

How to include more than one piece of data
How to handle possible errors in the data
Non-intuitive final probabilities in the real life example of drug testing

 



Example 2 – More Dice, More Rolls
For this problem, we will stick with trying to predict the probabilities of dice
drawn at random.  This time we are going have 6 possible dice, one with 4
sides, one with 6 sides, one with 8 sides, one with 10 sides, one with 12 sides
and one with 20 sides.   We are going to roll the die 15 times and calculate
what the probability for each die that it was the one that was drawn.

For this problem, since there is a lot more data, we will set up the problem in
Excel to generate the probability tables.   The tables that we will generate are
like the table at the end of example 1, except transposed so that the possible
dice run across the top row, and each new die roll is a new row.   This makes
for a nice format in excel for multiple rolls, and makes it easy to just set up the
equations in one row and drag them down for the rest of the rolls.

 

Generating The Random Roll

For problem 1, I chose that the die rolled a 2 as an illustrative example. 
However people are, in general, bad at picking truly random numbers, so
instead of picking 15 “Random” die rolls I have input the number of sides on
the die “randomly” chosen from the bag, and let excel choose random numbers
to simulate the roll



The random number is generated in column B using the function

= RANDBETWEEN(1,$B$9)  

To generate a random number between 1 and 8.  (The cell B9 references the 8
sided die chosen).   Since Excel has an annoying habit of updating random
numbers in its cells every time you press enter, I’ve copied the values as a
paste special into column C so that those values wouldn’t change.  The values
in column C are what will be used for the rolls for this problem.  (The copy
also updated the values in column B, which is why they don’t match column C)

 



Initial Probabilities

The next step is to decide the initial probabilities.   Since there are six dice,
and we are assuming they are randomly drawn from a bag,   I set the initial
probability of drawing each die to be 1/6, which is .1667

 

 

Probability Of The Roll For Each Die

The next step is to set up the equation for the dice probability, given a roll.  
Like we saw at the end of example 1

If the die roll is greater than whichever die we are looking at, the
probability that die would roll that number is 0.   (i.e. if we rolled an 9,
the probability that a 4, 6, or 8 sided die would roll that number is zero)
If the die roll is less than whichever die we are looking at, the
probability that die would roll that number is 1 divided by the number of
sides on the die

We are going to combine steps 3 & 4 that we had in the previous problem, so
we are going to get our probability for a roll, and multiply by the previous
probability in a single cell.

We could manually put in the equation for each roll, but it is easier to use an IF
statement in excel.  The equation that we want to use is

= IF (  equation to evaluate, value if true, value if false)

So we want

= IF ( roll > die # ,   0,   1 / die number  * previous normalized probability )

This says, if the roll is greater than the die number, set the probability equal to
zero, otherwise set the probability equal to 1 divided by the die number,
multiplied by the previous normalized probability.



If you are careful to put dollar signs ($) in front of the appropriate roll/column
references you can drag this equation to work for all the dice, and all of the
rolls

 

Normalize The Results

The final step is to normalize the results after each roll, which will give the
total probability up until that roll



The equation for normalizing is just the probability found after the IF statement
for each step, divided by the total probability for all the dice.   Once again,
with appropriate use of dollar signs this equation can just be dragged for all
the dice and all the rolls

 

What we end up with is that after the 15th roll, we calculate a 96.4% chance
that we had selected the 8 sided dice, and a 3.4% chance we had the 10 sided
dice.   The 12 and 20 sided dice had a very small percentage, and the 4 and 6
sided dice had a zero percent chance.

This answer of course matches the fact that we input the 8 sided die into
Excel’s random number generator.

When we plot the percentages after each roll



We see that
After the first roll, the 4 sided die drops to a zero percent chance.  This
is because the first roll was a 6
For the first several rolls, the 6 sided die appears to have the highest
likelihood, since it is the lowest numbered die that hadn’t had a roll
exceeding its value.  But since there was an 8 rolled on roll #5, the 6
sided die dropped to zero and the 8 sided die became dominant
The 10 and 12 sided dice experienced decaying likelihood since there
was no roll greater than 8.  They saw a brief spike in probability when
the 6 sided die dropped out since the results would be normalized on a
much smaller total probability
The 20 sided die was the fastest to have its probability decline (except
for the 4) since if we had selected a 20 sided die we were very likely to
roll a large number soon and knock out most of the small numbered dice. 
Since that did not occur, the probability we had selected the 20 sided die
is very small  (but still greater than zero)

 

Get the Excel File

If you want the Excel file shown, for this or any of the examples, it is available
here for free. http://www.fairlynerdy.com/bayes-theorem-examples/
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Some things to take note of after this example

Bayes theorem with multiple data points is basically just repeated
multiplication.  As a result, the final answer isn’t affected by what order
the data came in.   If we were to roll 1, 5, 10 and calculate our final
percentages, we would get the same final answer as if we rolled 10, 5, 1
In this problem we normalized after every roll.  You don’t have to
normalize each time; you could multiply all the probabilities together for
each roll and normalize one time at the very end.  The problem with this
is that the probability numbers get very small.  So small that many
computer programs have trouble with them and truncation errors and
round off errors can start to make impacts to the results.   As a result, it
tends to just be easier to normalize each step than to worry about dealing
with probabilities that are 1.3 * 10-31   or 2.2 * 10-56  

 



Bayes Theorem Terminology
Up until now we’ve skipped over some of the technical terminology for Bayes
theorem.  Now it is time to go over it, if for no other reason than so that you
will understand it if looking at other sources.

The initial probability, the probability of each possibility before we see
the data, is called the Prior
The normalized answer after computing the probability for each data
point is called the Posterior
The total probability that is used to normalize the answer is the
Normalizing Constant
The conditional probability, i.e. the probability of each possibility given
the data, is called the  Likelihood

How that looks on the table for the first problem is

 

Looking at it in equation form





Example 3 – Is It A Fair Coin
You have a coin that you suspect is not a fair coin.  You flip the coin 100 times
to determine if it is fair.  After 100 flips, calculate the probability that the coin
is weighted to come up heads each of these percentages,  0%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

 

Generating The Random Data

The data generation for this problem is set up similar to the last one.   I started
by inputting a percentage into excel for how frequently the coin will land on
heads.  Then I generated a random number for each flip in column B using the
RAND() function.  I copied & pasted special into column C so that it would
not be updated each time.  And then used an IF statement in Column D which
said  IF column C is less than The Heads probability (.65) make the cell in
column D be 1 for Heads, otherwise make it be 0 for tails

 



 

Of course, if you are flipping an actual coin you can skip all of that and just
write down the results from your flips.   What I got as data was 63 heads and
37 tails, which is pretty much what you would expect from a random number
generator with the 65% chance of heads as an input.

If you want to follow this example with this exact data, you can grab the
EXCEL file from my website, or copy down the 100  1’s and 0’s that follow
which are the Heads & Tails I used

1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0

0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0

1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0

0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1

http://www.fairlynerdy.com/bayes-theorem-cheat-sheets/


1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1

 

Initial Probability

The first step is to set up what our possible outcomes are.  Then add initial
probabilities.   The possible outcomes are defined, and are percentages from
0% to 100% by 10% steps.  So there are 11 initial possibilities.

We will naively assume that all initial possibilities have an equal probability,
so a 1 in 11 chance.  (More realistically we could change the initial
probabilities to more heavily weight the possibilities around 50%, and away
from those at 0% or 100%.   But that is complication we are avoiding in this
book, and since we have 100 flips of the coin the initial probabilities aren’t
that important anyway.  (Something that is known as “Swamping the Prior”)

 

We are representing the initial possibilities as decimals, i.e. 50% is .5 which
will be useful when calculating the odds after each flip.

 

Likelihood Function

To calculate the odds after the flip, we need to look at each possible outcome
for each initial possibility.  The possible outcomes are, the flip is heads, or the
flip is tails.    If the flip is heads, the probability that a given weighting of coin
would produce that outcome is equal to its percentage.   For instance, if the flip
was heads, the probability that the 90% coin would produce that outcome is
90%.    If the flip is tails, the probability that a given weighting of coin would
produce that outcome is 1 minus the percentage.   For instance the probability
that a 90% coin would land on tails is 10%

Putting that in Excel, we need an IF statement that checks to see if the flip is
heads, and assigns the heads probability multiplied by the old probability if it
is heads, or assigns the tails probability multiplied by the old probability if it



is tails

 

 

Normalizing

Once again we are normalizing every step, which gives us our odds after every
step

This ends up being easiest to view as a bar chart.  The initial chart is the
probability after 10 flips, and then each additional chart adds 20 additional
flips.   Since our input data was a coin probability of 65%, and what we



actually got was 63 flips out of 100, what we expect to see in these charts is
that the possibilities for 60% and 70% are the most likely

After 10 flips, the 80% coin has the highest probability.  This is because there
were 8 heads in the first 10 flips.  The 0% coin and the 100% have a zero
probability, since there was at least 1 head and 1 tail.  The 10%, 20%, 30%
coin have a very small probability.



After 30 flips, the 70% coin has the highest probability, with the 60% close
behind.  This reflects 20 heads in the first 30 flips (66%)



In subsequent flips, there is continued movement towards the 60% probability
number, and the 50% and 70% probability numbers have reasonably high
percentages as well.



Finally, after 100 flips, we end up with an approximate 70% chance that we
have a .6 weighted coin, a 27% chance we have a .7 weighted coin, and a 3%



chance that we have a .5 weighted coin.

What does the 70% chance for the .6 weighted coin actually mean?  It is not a
70% chance that the coin is exactly weighted 60 percent.  Since we had step
sizes of 10% between each coin, we are estimating there is a 70% chance this
coin would land heads between 55 and 65 percent of the time.  The decision at
the beginning to use 11 initial possibilities, with a step size of 10% was
completely arbitrary.  We could have used 101 initial possibilities with a step
size of 1%.   If we had done that, we would have gotten a result that had the
highest probability at 63% (since we had 63 heads) and a smoother drop off in
the chart.

If we consider a fair coin to be one that comes up between 45% and 55%, we
are estimating that there is only a 3% chance that this is a fair coin.

 

Some things to take note of after this example

Another interesting point from this example is

We saw convergence slower than we saw on the dice example from
problem 2. This is because there is less difference in the probabilities
for the coin flipping problem than for the dice problem.  i.e. There was
less distinction between a coin flipping 60% vs. 70% than there was for
a die rolling an 8 vs a 10



Example 4 – More Dice, But With Errors In The Data Stream
The setup for this example is the same as problem 2, except that we are going
to assume there could be errors in our data.  Our friend is pulling dice out of a
bag again, and the dice could have 4, 6, 8, 10, 12, or 20 sides.  He is going to
roll the die 80 times and write down the results.

The only problem is that this time he is sloppy at writing down the results. 
Perhaps he is a bad typist and his fingers keep slipping on the keyboard.  As a
result, 95% of the time the data will be entered correctly, but the other 5% of
the time the data we are working with will just be a random number between 1
and 20.

 
Data Generation

As input I entered the number of sides, as well as the odds that the data had an
error.  In this case, the die rolled is an 8 sided die, and there is a 5% chance of
an error

To generate the input, I used a combination of these functions

IF()
RAND()
RANDBETWEEN()

The equation is

= IF(  RAND() >  Probability of Error,   RANDBETWEEN(1, # of Sides on
Die),   RANDBETWEEN(1,20) )

Which says, if the random number is greater than the probability of an error
(.05 in this example) then there was not an error on this roll, so generate a
random integer between 1 and the number of sides on the die, otherwise
generate a random integer between 1 and 20



Once again, the data is copied over to another column so it doesn’t update
every EXCEL calculation

The EXCEL file with the data and solution is available here, and the 80 die
rolls that I used are

5, 6, 1, 7, 2, 2, 6, 3, 3, 6

4, 5, 1, 7, 7, 6, 7, 3, 4, 1

7, 4, 3, 3, 2, 7, 2, 7, 3, 6

http://www.fairlynerdy.com/bayes-theorem-cheat-sheets/


8, 4, 1, 2, 6, 6, 1, 4, 3, 1

2, 4, 7, 6, 3, 8, 4, 5, 8, 7

4, 8, 3, 7, 4, 1, 6, 5, 8, 7

3, 7, 17, 5, 6, 1, 4, 8, 7, 3

2, 3, 5, 7, 6, 3, 4, 19, 1, 4

(Side-note, what do you think your error rate for manually copying those
numbers down for your own use is? 1-2% ?)

What If You Ignored The Possibility of An Error?

At first thought, we could solve this problem just like we did in example 2. 
But when you do that, the plot of probabilities becomes what is shown below. 
(The easiest way in the EXCEL file is to leave the error rate as .05 when
generating the roll data, but then set it back to zero since the Bayes equations
are referencing it)

What occurs here is that the 8 sided die becomes dominant within the first 20
rolls, which are all less than 8.  (statistically, with a 5% chance of error, there
could have been an error in the first 20 rolls, but even if there is an error, that
error has an 8 in 20 chance of being less than or equal to 8)   By roll number
63 the 8 sided die is extremely dominant, and the odds of the next closest die,



which is the 10, are less than 1 in 1 million.

However the odds of getting an error are only 1 in 20, and the odds that error
will be greater than 8 are 60%.  So 3% of the rolls will be an error greater
than 8, which is what happens on roll #63 where a 17 is “rolled”.

Since the equation from example 2 is set up to set the odds of a die equal to
zero whenever a number greater than it is rolled, the odds for everything
except the 20 sided die go to zero, which makes the normalized odds for the 20
sided die 100%

Now if a person was scrupulously watching the data, they might spot that error
and cut the 17 from the dataset.  But they might not.  A more robust way is to
bake some possible error into the conditional probability equations.  The high
level thought process behind this is

Never set any probability to zero unless you are positive that it cannot
occur and you want to cut it from any future consideration.

If you do set the conditional probabilities to zero, then you could have a
scenario where you roll one thousand numbers between 1 and 8, but the one
thousand and first number gets written down as a 9 and you would strike the 8
from the possibilities.   If instead of setting the conditional probabilities to
zero, you just set it to a really small number, then the initial 1000 rolls would
overwhelm the 1001st roll which is an error.

So how should the equations be set up?

Initial Probabilities

Once again we are setting the initial probabilities for each die to be 1 in 6

 

Likelihood Function

The conditional probabilities are what are different from example 2.  But we



are still setting up the equation as “IF the roll is greater than the number on the
die, use one probability, otherwise use a different probability”.   So all we
need to do is calculate what the two probabilities are, baking our error rate
into the equation.  The two probabilities that we need to calculate are

If the recorded number is greater than the number on the die, what are the
odds you would have gotten that recorded number if you had selected
that die from the bag
If the recorded number is less than the number on the die, what are the
odds you would have gotten that recorded number if you had selected
that die from the bag
 

I am going to explain the equations using a 6 sided die as an example.  And the
same equations would be applied separately for the other dice.

If the recorded number is greater than 6, for instance if it is a 7
If you had a 6 sided die, the odds of recording a 7 are the probability of
recording an error, divided by 20.  That probability gets multiplied by the
probability from the previous die roll, or initial probability.  This is because
the only way you can get a number greater than the die is if it is an error,  and if
the recorded number is an error the odds that it will be any given number are 1
in 20

If the recorded number is less than 6, for instance if it is a 2

If you had a 6 sided die, the odds of recording a 2 are One minus the
probability of an error  (i.e. the probability of correctly recording the die
roll)   divided by the number of sides on the die (6 in this case)  PLUS the
probability of recording an error divided by 20.  That total probability gets
multiplied by the probability from the previous die roll, or initial probability.

These odds are because there are two ways of recording a 2 for this 6 sided
die.  The first is that you roll a 2, and correctly record it.   In that case the
probability a 2 is written down is  1/6 * the probability of correctly recording
the die roll.    The second way of recording a 2 is to roll any number, and then
incorrectly record it and randomly write down a 2.

This could be confusing, but you could actually take the 6 sided die, roll a 2,



and then ignore the roll but still randomly write down a 2.   I.e. one way to
think about it is that when you make an error,  5% of the time in this problem, 
you don’t even bother looking at the die roll and just write down a random
number.

 

A different way of arriving at the conditional probability equation

If the conditional probability equation with the error doesn’t make sense, here
is a different way of thinking about it.

Start with the conditional probability for when there is no error.   i.e. a 0
chance if the roll is greater than the number on the die, and 1 divided by
the number on the die otherwise
Then subtract the probability of writing down an error from the 1
divided by the die number.   i.e. if you write down an error 5% of the
time, the probability of not writing down the error is .95, which is then
multiplied by the 1 divided by the die number
Then, for both parts of the if statement, add in the probability that you
would write down an error divided by 20  (since if you write down an
error, there is a 1 in 20 chance you would write down any given number)

 

The equation in Excel
The way the equation looks in Excel

 

The Results

When you drag that conditional probability equation into all of the dice, and all
of the rolls, and normalize as usual, the results are



 

In this example, the 6 sided die initially is the favorite, because the first 3 rolls
are 5, 6, 1.   Then a 7 is rolled and the 8 sided die is the favorite.  However in
this example, the 7 doesn’t make the probability of having a 6 sided die
completely equal to 0, because that 7 could be an error.

For the next nine rolls, they are all less than or equal to 6, and the 6 sided die
starts to rise in probability again.  However then there are two 7’s rolled in
quick succession and the probability of having the 6 sided die becomes very
small.

Later on, there is a 17 and a 19 rolled that are clearly an error.   Without the
error checking the 20 sided die became the only possibility.  But with the error
checking the 8 sided die is still the most likely.



Example 4A - What if you have a really high error rate?
 

For the previous example we used a fairly low error rate, only 5%.   At that
level of error, a person could likely manually review data and spot odds
numbers, which is basically what we were doing with this chart when we
determined that it was weird for the 8 sided die to take such a hit

 

But what if you had a much higher error rate?    This example is the same as the
last one, except instead of a 5% error rate, we are assuming a 75% error rate. 
Since we have such a high error rate, we also need more data, so we have 250
rolls of the dice instead of 80.   Once again we are starting with an 8 sided die
as the die actually drawn from the bag

The data that I am using is
9,  8,  16, 3,  8,  4,  3,  6,  3,  18, 9,  17, 18, 5,  13, 8,  7,  6,  4,  2
11, 17, 17, 5,  14, 12, 6,  12, 6,  6,  3,  6,  6,  13, 13, 5,  4,  2,  6,  4
2,  3,  1,  8,  16, 4,  1,  11, 8,  7,  14, 16, 5,  10, 2,  3,  8,  2,  1,  3
10, 6,  16, 6,  10, 17, 1,  18, 19, 4,  5,  7,  3,  4,  2,  4,  20, 14, 20, 10
16, 6,  1,  7,  5,  1,  15, 8,  7,  1,  12, 10, 13, 1,  6,  9,  11, 13, 7,  15
10, 14, 6,  3,  5,  6,  1,  6,  2,  13, 20, 5,  18, 1,  12, 10, 10, 4,  5,  16
5,  14, 3,  4,  4,  2,  11, 12, 18, 4,  8,  1,  5,  19, 14, 7,  14, 17, 16, 8



1,  20, 18, 4,  5,  1,  7,  4,  5,  13, 8,  17, 3,  7,  6,  16, 18, 2,  11, 6
10, 19, 13, 2,  7,  12, 11, 18, 12, 4,  10, 8,  3,  10, 14, 18, 16, 3,  15, 11
16, 14, 7,  7,  13, 12, 11, 2,  6,  19, 7,  3,  19, 1,  5,  19, 18, 3,  18, 7
4,  4,  11, 14, 12, 5,  1,  12, 8,  19, 5,  19, 14, 16, 18, 9,  7,  3,  18, 2
5,  8,  1,  15, 11, 14, 19, 6,  4,  19, 3,  15, 11, 6,  18, 17, 13, 17, 9,  7
7,  15, 3,  15, 16, 16, 20, 2,  2,  5
 

Here it is not so easy to tell which items in the data are in error

Applying the same equations from Example 4 to this dataset, the plot below
gets generated

Once again the 8 sided die becomes the clear most likely die that was drawn
from the bag.  With this high error rate, it took many more rolls, and the result
was a lot choppier.  However even after an only moderate number of rolls, the
result was most likely either the 6 or the 8, with the 10 being a smaller
possibility.  

If you have an even higher error rate, for instance 99%, you could still get the
correct answer out of it.  However the higher the error rate, the more rolls you
will need.  For this 75% error rate we are getting 1 good data point out of
every 4.  If we had a 99% error rate we would get 1 good data point out of
every 100, so we would likely need at least 25 times as much data as we have
now to get a dominant die.



 

What if you don’t know the probability of an error?

Part of my solution in Examples 4 and 4A could be considered cheating.   After
all, I input the probability of the error, so therefore I knew exactly how likely
there was to be an error and could bake that into the likelihood equations. 
What if you didn’t know the likelihood of the error?   After all, if you are
working with actual data from actual measurements, you would have at best a
rough guess as to what your error rate was.

For these plots I’m going to use the same dice rolls as I used in examples 4 &
4A.  Those charts were generated with the 5% error rate and the 75% error
rate respectively. However I am going to vary the error rate that is built into
the conditional probability equations to be something different.

 

For the 5% error rate data, this was the baseline plot, which we generated
knowing there was a 5% error rate

 

If instead we mistakenly assume there is a 1% error rate the plot changes to be



This is very similar to the baseline plot, except that it is converging faster.  In
fact we can knock the guessed error rate down even farther, and get
substantially the same result

This plot is guessing a .0001% error rate.   It looks almost exactly like the plot
would if we assumed no errors and then actually did not have any errors.  This
is because by rolls 63 and 78, when we are getting our error rolls of 17 and



19, the probability of the other numbers are so low that even assuming a very
low error rate doesn’t change the results.  

It is however possible to guess an error rate so low that the results change on
this plot.  Here is the plot using the ridiculously low error rate of 1e-25

 

So clearly if we set the error rate too low the results change, and end up being
the same as if we had not included an error rate at all.   In this case “too low”
is “ridiculously low”, but that would not be true for every problem.    What
happens if we overestimate our error rate?

Here the error rate is set to 10%, when it was generated at 5%.



We start to see a slower convergence towards the 8 sided die, and a greater
likelihood of the 6 sided die until it got knocked out of the running by multiple
7’s right in a row.

Here we are assuming the error rate is 50%. 

And we start to see it take quite a bit longer to converge, although it does



converge on the correct solution.

Those were examples where the actual error rate was low, 5%.  What about
when the actual error rate is high, 75%  ?   This is the plot of the baseline
problem, where the data was generated with a 75% error rate, and the
conditional probabilities were correctly done with the 75% error rate

If instead, we generate the data with the 75% error rate, but guess that the error
rate is 5% our result is



That result is wrong.  It calculated the 20 sided die as the one selected, which
is not correct.   Even if we guess a 50% error rate on the data that was
generated with the 75% error rate, it still trends to the wrong answer of the 20
sided die

 



If we guess high, and guess an error rate of 90% we get the following chart

This shows the 6 and 8 sided die as having the highest probability, but it has
not yet converged as having one die have the dominant results yet.

 

Big Picture Takeaway

So what is the big take-away from all these charts of the sensitivity around
different error rates?

If your estimate of the error rate is higher than the actual error rate, the
results will converge slower but will still converge to the correct result
If you estimate the error rate too low there is a risk that the results will
not be correct
The smaller the actual error rate is, the more wiggle room you have in
guessing the error rate
The higher the actual error rate is, the more data you need



Example 5 – The German Tank Problem
It’s time to take a break from dice and coins and look at a few other
applications of Bayes Theorem.   One of the most famous applications of it is
the German Tank Problem.   In this problem you are trying to estimate how
many tanks have been produced, based off of the serial numbers of captured
tanks.  Bayes theorem was used in World War 2 by the Allies to do exactly
that, and ended up with results that were substantially lower for total number
of tanks produced than conventional intelligence estimates (i.e. spies) were
reporting.   After the war, records indicated that the statistical estimates using
Bayes Theorem were also substantially more correct.

 

Problem
You are analyzing serial numbers pulled off of wrecked or captured tanks.  Use
those numbers to estimate how many tanks have been produced.  You know this
about the tank serial numbers

They start at 1
They are sequential without gaps

You have found these serial numbers, 30, 70, 140, 125

 

Setting Up The Problem

Of all the examples in this book, this is the one where there is the most
opportunity for differences in the problem set up.  The biggest question to ask
is, what is the maximum number of tanks in the estimate?

For this problem, I am going to choose a maximum of 1,000 tanks.  But a
reasonable person could choose a different number like 500 tanks, or 2,000
tanks and get different results.    Because I am solving this problem in Excel, I
am going to analyze for every 20 tanks, which means I have 50 initial
possibilities for numbers of tanks.   You could analyze for every single number
in Excel with some difficulty, or do it easily in a programming language, but
making this assumption will give more or less the same answer and
substantially reduce the size of the Excel sheet.



 

I am assuming that all possibilities of number of tanks are equal (i.e. in the
prior there is the same probability of having 50 tanks as having 500 tanks).  
Once again, this is something that a reasonable person could make a different
assumption on, and get different results.  (Note, there are more columns in the
Excel file than shown in the picture, it wasn’t possible to show all the way up
to 1000 and still make the picture legible)

 

Likelihood Function

The conditional probability is a lot like the conditional probability for the dice
problem.

If the serial number observed is greater than the max serial number for
that possibility, the probability of having that number of tanks that
number is 0
If the serial number observed is less than the max serial number for that
possibility, the probability of observing that number is 1 divided by that
number of tanks, multiplied by the probability for the previous step



 

After multiplying these conditional probabilities through the 4 tanks observed
and normalizing, these are the results

There is a big spike in probability at the maximum serial number observed. 
After that there is an asymptotic decay towards the greater number of tanks. 
After 4 tanks, the maximum number observed is 140, so the single most likely
answer is that there are 140 tanks.   The location of that spike changes as the
maximum observed serial number changes for different observations.

A person might then estimate that there are 140 tanks, but even though that
number is the most likely answer, it is not the best estimate since it is almost
definitely under-predicting the number of tanks.

If we take a weighted average of the number of tanks  (i.e. multiply 140 tanks
by its final probability, 160 tanks by its final probability, 180 by its



probability, etc., and sum that result) we get a total of 193.3 tanks, which is a
good estimate for total number of tanks.

If we had assumed 2,000 tanks at the beginning, the weighted average would
be 195.4 tanks, which is substantially the same result



Example 6 – Drug Testing
This problem will show how Bayes Theorem can give results that might be
surprising.  

You are testing for a certain drug.  You know that .5% of the population uses
this drug.  You have a test that will produce 99% true positive results for users,
and 98% true negative results for non-users.  You randomly test 1 person from
the population and get a positive result.   What is the probability that they are
actually a user of the drug?

 

Follow Up Parts To The Question

If the results from multiple tests are independent of the other tests (i.e. you
aren't likely to get an incorrect result over and over again on the same person
because they have, for instance, weird blood), then if you randomly test 1
person and get 1 positive result, then 1 negative result, what is the probability
that they are actually a user of the drug?  How about 2 positive results? 

 

Initial Probability

Like all of the Bayes problems, we will start with initial probabilities.  In this
case, for our random individual, the initial probability that they are a drug user
is .5%, and the probability that they are not a drug user is 99.5%.

The next step is conditional probability.   There are two possibilities, the
subject uses the drug or they do not.

If the subject tested uses the drug, the chance the test will report a
positive (true positive) is .99, and the chance the test will report a
negative (false negative) is .01.
If the subject does not use the drug, the chance the test will report a
positive (false positive) is .02 and the chance it will report a negative
(true negative) is .98.

Putting this in Excel is simple, we need an IF statement to check if the test
reported a positive or a negative, and then we need to multiply the probability
from the previous step by the conditional probability for both the drug user and



non-user possibilities.

Likelihood Function For Drug User Possibility

 

Likelihood Function For Non-User Possibility

 

Once the resulting probabilities are normalized, we see that the probability that
this random individual who tested positive was actually a drug user is only
19.9%.   This result surprises many people, because after all, the 99% accurate
test should mean that the subject tested has a 99% chance to be a drug user if
the test comes back positive, right?   This turns out not to be the case.   Since
the initial probability was so small, only .5%, even a large increase in that
probability wasn’t enough to make it a really high probability



Most people’s intuition fails to account for the initial probability.  Even if the
conditional probability is really high, a very low initial probability can result
in a low final probability.   Most people’s intuition is tuned around the initial
probability being 50 / 50.   If that is the case, the result ends up being a 98%
chance that the positive test result means that the subject was a user of that
drug, as shown below

 

 
Follow Up Questions

Going back to the initial problem, where we had an initial probability of .5%
that a randomly tested person was a user of the drug, what are the odds if we
get either 1 positive and 1 negative, or 2 positives ?

With 1 positive and one negative, the probabilities end up being pretty close to
the initial probability, there is a 99.75% chance that the subject is not a user of
the drug.  (If the true positive and true negative reliability percentages were the
same, then a True & False result would exactly cancel each other out, but since
they are slightly different we don’t end up with the exact initial probabilities)



 

If we have 2 positive results, we end up with a 92.5% chance that the subject
is a user of the drug

 

 

For this problem, the most important numbers end up being the .5% initial
chance of the randomly tested subject being a user of the drug, and the 98%
change that a non-user will test negative.  Since out of the general population
only 5 people in 1000 actually use the drug, if you were to administer the test
to 1000 people you would (approximately) get the 5 actual users showing up
as positive results, and you would also get (approximately) 20 non-users
showing up as positive results.   So of the 25 people who tested positive, only
5 of them, or 20% would actually be users of the drug.   This is why we got the
19.92% number after 1 test using Bayes theorem.  (The slight difference
between 20% and 19.92% is because we would get slightly less than 5
positives in 1000 due to the 99% true positive rate, and we would get slightly
less than 20 non-users showing positive results from multiplying 2% by 995
non-users.)

If we were to change the 98% True Negative rate to something much higher,
like 99.99%, so that instead of 20 false positives in 1,000 tests we got 1 false
positive in 10,000 tests, then the chance that a random person is a user of the
drug after 1 positive test becomes much higher, around 98%



More Books
If you liked this book, you may be interested in checking out some of my other
books such as

Machine Learning With Random Forests and Decision Trees – This is a
detailed walk through of how the machine learning algorithms Random
Forest and Decision Tree work.  It uses some Python code, but is more
focused on examples and analogies to give you an intuitive understanding
Excel Pivot Tables: Crunch Large Amounts of Data: This goes through
how to use the pivot tables in Excel to quickly filter and sort data.  Pivot
tables are more powerful than data filters, and much, much more
powerful than trying to crunch the data manually, and they are not that
difficult to use.
Hypothesis Testing Examples – This goes through examples of
calculating statistical significance using Z tests and T-tests

Another good book on Bayes Theorem that is more technical than this one, and
deals with some problems that need more complicated priors or more
complicated probability functions is Think Bayes.

 

If you’d like some humorous examples of Bayes Theorem in action, check out

https://xkcd.com/1132/

https://what-if.xkcd.com/65/

 

And if you want to get any of the Excel files shown in this book, they can be
downloaded at http://www.fairlynerdy.com/bayes-theorem-examples/ for free

https://www.amazon.com/dp/B01JBL8YVK
https://www.amazon.com/dp/B01FJ47S2E
http://amzn.to/1ZCo1OU
http://amzn.to/1n9M1rA
https://xkcd.com/1132/
https://what-if.xkcd.com/65/
http://www.fairlynerdy.com/bayes-theorem-examples/


Thank You
 

Before you go, I’d like to say thank you for purchasing my eBook.   I know you
have a lot of options online to learn this kind of information.    So a big thank
you for downloading this book and reading all the way to the end.   

If you like this book, then I need your help.   Please take a moment to leave a
review for this book on Amazon.   It really does make a difference, and will
help me continue to write quality eBooks on Math, Statistics, and Computer
Science.

If you want to keep up to date on any new eBooks, examples, or cheat sheets
you can find us on Facebook at

https://www.facebook.com/FairlyNerdy

or interact with us at our home page

http://www.FairlyNerdy.com

 

http://amzn.to/1VhosHM
https://www.facebook.com/FairlyNerdy
http://www.FairlyNerdy.com
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