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David Richeson

K okichi Sugihara, a pro-
fessor of engineering in 
Japan, has spent decades 
making objects look and 
move in seemingly impos-

sible ways. This year Sugihara’s 
video Ambiguous Optical Illusion 
received second prize in the Neural Correlate Society’s 
best illusion of the year contest (http://bit.ly/ambcylin). 
It shows a variety of three-dimensional objects that look 
like one shape when viewed from the front but like a dif-
ferent shape in a mirror propped up behind it. 

Sugihara’s video became a viral sensation. It was 
viewed approximately 5 million times in the first week. 

Are such shapes impossible? No, they just look that 
way. It is all about perspective. We show you the math-
ematics behind Sugihara’s method for making one of the 
simpler shapes: one that looks like a circular cylinder 
from the front and a square cylinder in the mirror. And 
we give a template for you to make your own paper 
model (see figure 1).

Finding the Curve
The key to this illusion is that the top of the cylinder 
is not a planar curve. Figure 2 shows three views of the 

Sugihara’s 
Impossible 
Cylinder

DO THE MATH!
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closed curve that represents the 
top rim of Sugihara’s shape. In one 
view, it looks as if we are looking 
at the unit circle in the xy-plane. In 
another, it looks like a square dia-
mond. (Visit http://bit.ly/29itVkx 
for an interactive applet in which 
you can rotate this curve in space.) 

To set this up mathematically, 
suppose we have two viewers look-
ing down on a curve floating above 
the xy-plane (in the video, this 
second viewer is you, in the mir-
ror). From the viewers’ perspec-
tives, it looks as if they are viewing 
the curves  and  
respectively. 

In our example, the two observed curves are the unit 
circle and the square passing through the points  
and  as shown in figure 3. We will have to break 
each of these shapes into different curves. We’ll have 

 for half the square and g(x) = 1 x 2   
for half the circle. Then we take their negatives to ob-
tain the other halves. 

Now we add a z-axis. We assume the floating curve 
is given parametrically as r(t). One viewer thinks she is 
seeing the curve (x, f (x), 0),  and the other thinks he is 
seeing (x,g(x), 0).  

We would like the two viewers to look down on the 
curve at 45-degree angles on opposite sides of the xz-
plane. We could give their exact locations as  
and  for some suitably large value a. But 
instead, we make the simplifying assumption that they 
are far enough away that they can treat the entire curve 
as if it is a single point; that is, the vectors from any 
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point on the curve to 
the viewers’ eyes are 
parallel to  and 

 respectively. 
See fi gure 4.

Our aim is to fi nd 
an expression for 
r(t). Let’s fi x t. One 
viewer needs to see the 
point r(t) and think 
she’s seeing the point 

 Thus, 
the line through A 
parallel to the vector  must pass through r(t). 
Likewise, for the second viewer to see r(t) and think he’s 
seeing  the line through B parallel to the 
vector  must pass through r(t). In other words, 
r(t) is the intersection point of these two lines.

It is straightforward to show that 
rA(s) = (t,s + f (t),s)  and rB(s) = (t, s + g(t),s) are 
the parameterizations of the lines through A and B, 
respectively. Moreover, the point of intersection is 
(t, 12(f (t)+ g(t)),

1
2(g(t) f (t))).  In particular, the param-

eterization of our curve is
r(t) = t, 12(f (t)+ g(t)),

1
2(g(t) f (t))( ).

We may now plug   in our functions. The portion of our 
curve with nonnegative y-coordinates is given by

r1(t) = t, 12(1 | t |+ 1 t 2), 12( 1 t 2+ | t | 1)( )
 for  and the other half is given by 

r2(t) = t, 12(| t | 1 1 t 2), 12(1 1 t 2 | t |)( )
for  

We encourage the reader to use three-dimensional 

graphing software—or better, a 3D printer—to create 
her own impossible shapes using other functions f and g. 

A Paper Impossible Cylinder
The impossible cylinder is almost unbelievable—a pic-
ture doesn’t do it justice. Thus, the reader may wish 
to make one from paper. Download the printable pdf 
(shown in fi gure 5) from maa.org/mathhorizons/
supplemental.htm, and follow these simple instructions.
1) Cut out the shape at the top of the page.
2) Fold a sharp crease 

along the dotted line.
3) Tape the left and right 

edges together.
4) Fold a sharp crease 

along the taped seam.
5) Gently squeeze together 

the creased sides so 
that the shape opens. 
Looking down on the 
cylinder, it should have 
the shape at the bottom 
of the printout.

6) Close one eye. Look 
down on the shape at a 
45-degree angle so that the two creases line up 
with each other. 

7) Then turn it around 180 degrees and look again. 
Making the template was an interesting mathematical 

challenge. It required parameterizing the lower shape in 
fi gure 5 by arclength, which had to be done numerically. 
We leave that as an exercise to the reader. 
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For a look at Kokichi Sugihara’s work, visit his 
web page http://bit.ly/29isMcS and check out his 
2015 book, Joy of Ambiguous Solids: How to Make 
Anomalous Objects That Change Their Appear-
ances in a Mirror.  


