Investigation on congruency of triangles

Two triangles are congruent if they are identical in size and shape. This means that, the corresponding sides and angles of the two congruent triangles are equal.

Whenever two triangles are congruent, we can state the following: $\triangle \mathrm{ABC} \equiv \triangle \mathrm{FGD}$
Note: An included angle in a triangle is formed by two sides of a triangle.

Activity 1 i.

a. Use the applet "Discover SSS" to complete the table below:

Triangle	Slider $\mathbf{a}=\mathbf{3}$ and $\mathbf{b}=\mathbf{4 . 5}$					
$\Delta \mathrm{ABC}$ (Green)	$\mathrm{AB}=3$	$\mathrm{AC}=4.5$	$\mathrm{BC}=4.36$	$\hat{A}=$	$\hat{B}=$	$\hat{C}=$
$\Delta \mathrm{FGD}$ (Blue)	$\mathrm{DF}=3$	$\mathrm{DG}=4.5$	$\mathrm{FG}=4.36$	$\widehat{D}=$	$\hat{F}=$	$\widehat{G}=$
	Set Slider $\mathbf{a}=\mathbf{3 . 8}$ and $\mathbf{b}=\mathbf{5}$					
$\Delta \mathrm{ABC}$ (Green)	$\mathrm{AB}=3.8$	$\mathrm{BC}=5.01$	$\mathrm{AC}=5$	$\hat{A}=$	$\hat{B}=$	$\hat{C}=$
$\Delta \mathrm{FGD}$ (Blue)	$\mathrm{DF}=3.8$	$\mathrm{FG}=5.01$	$\mathrm{DG}=5$	$\widehat{D}=$	$\hat{F}=$	$\widehat{G}=$
	Set Slider $\mathbf{a}=4.6$ and $\mathbf{b}=\mathbf{5 . 5}$					
$\Delta \mathrm{ABC}$ (Green)	$\mathrm{AB}=4.6$	$\mathrm{BC}=5.68$	$\mathrm{AC}=5.5$	$\hat{A}=$	$\hat{B}=$	$\hat{C}=$
$\Delta \mathrm{FGD}$ (Blue)	$\mathrm{DF}=4.6$	$\mathrm{FG}=5.68$	$\mathrm{DG}=5.5$	$\widehat{D}=$	$\hat{F}=$	$\hat{G}=$

b. Using the measurements in the table above and the applet, fill in the gaps:

AB \qquad $D F ; A B$ is opposite angle \qquad and DF is opposite angle \qquad ; and $\hat{C} _\hat{G}_{-}$

BC \qquad FG; $B C$ is opposite angle \qquad and FG is opposite angle \qquad and \hat{A} \qquad D

AC \qquad DG; AC is opposite angle \qquad and DG is opposite angle \qquad ; and $\underline{\hat{B}} \hat{F}$
c. What can you say about the corresponding angles in each case? \qquad
d. What can you conclude about $\triangle \mathrm{ABC}$ and $\triangle \mathrm{FGD}$ in each case? \qquad
e. If the corresponding sides of two triangles are \qquad ; then the triangles are \qquad . This is written as. \qquad

Activity 1ii.

a. Use applet "Does AAA work" to complete the table below:

Triangle	Slider $\mathbf{a}=\mathbf{2}$ and $\mathbf{b}=\mathbf{3 . 5}$					
$\Delta \mathrm{ABC}$	$\mathrm{AB}=$	$\mathrm{BC}=$	$\mathrm{AC}=$	$\hat{A}=$	$\hat{B}=$	$\hat{C}=$
$\Delta \mathrm{FGD}$	$\mathrm{DF}=$	$\mathrm{FG}=$	$\mathrm{DG}=$	$\widehat{D}=$	$\hat{F}=$	$\widehat{G}=$
Slider $\mathbf{a}=\mathbf{3}$ and $\mathbf{b}=\mathbf{4}$						
$\Delta \mathrm{ABC}$	$\mathrm{AB}=$	$\mathrm{BC}=$	$\mathrm{AC}=$	$\hat{A}=$	$\hat{B}=$	$\hat{C}=$
$\Delta \mathrm{FGD}$	$\mathrm{DF}=$	$\mathrm{FG}=$	$\mathrm{DG}=$	$\widehat{D}=$	$\hat{F}=$	$\hat{G}=$

b. Using the measurements in the table above, complete the gaps

$$
\hat{C} \quad \hat{G} \text { but } \mathrm{AB}
$$

\qquad DF
$\hat{A} \quad \widehat{D}$ but BC \qquad FG
$\widehat{\hat{B}} \quad \hat{F}$ but $A C$ \qquad DG and
c. What can you conclude about $\triangle \mathrm{ABC}$ and $\triangle \mathrm{FGD}$ in each case? \qquad
d. In two triangles, three corresponding angles may be equal but \qquad

Activity 2i

a. Use applet "Discover SAS" to complete the table below:

Triangle	Slider $\mathrm{a}=3.5$ and $\alpha=45^{\circ}$					
$\triangle \mathrm{ABC}$ (Green)	$\mathrm{AB}=3.5$	$B C=$	$\mathrm{AC}=4.87$	$\hat{A}=45^{\circ}$	$\widehat{B}=$	$\hat{C}=$
$\triangle \mathrm{PQR}$ (Pink)	$\mathrm{PQ}=3.5$	$Q \mathrm{R}=$	$\mathrm{PR}=4.87$	$\widehat{P}=45^{\circ}$	$\hat{Q}=$	$\hat{R}=$
	Set Slider $\mathrm{a}=4.5$ and $\alpha=60^{\circ}$					
$\triangle \mathrm{ABC}$ (Green)	$\mathrm{AB}=4.5$	$\mathrm{BC}=$	$\mathrm{AC}=6.26$	$\hat{A}=60^{\circ}$	$\hat{B}=$	$\hat{C}=$
Δ PQR (Pink)	$\mathrm{PQ}=4.5$	$Q \mathrm{R}=$	$\mathrm{PR}=6.26$	$\hat{P}=60^{\circ}$	$\widehat{Q}=$	$\hat{R}=$
	Set Slider a $=5.5$ and $\alpha=75^{\circ}$					
$\triangle \mathrm{ABC}$ (Green)	$A B=$	$B C=$	AC=	$\hat{A}=$	$\hat{B}=$	$\hat{C}=$
\triangle PQR (Pink)	$P \mathrm{P}=$	QR =	PR =	$\hat{P}=$	$\widehat{Q}=$	$\hat{R}=$

b. What can you conclude about the corresponding sides and angles of $\triangle A B C$ and $\triangle P Q R$ in each case.
c. If, in two triangles, two pairs of corresponding sides are \qquad and the corresponding pair of included angles are \qquad . Then the two triangles are \qquad . This is written as
\qquad _.

Activity 2ii

a. Use applet "Does SSA work" to complete the table below:

Triangle						
$\Delta \mathrm{PQS}$	$\mathrm{PQ}=$	$\mathrm{QS}=$	$P S=$	$\hat{P}=$	$P \mathrm{Q} S=$	$P \hat{S}=$
$\Delta \mathrm{PQR}$	$\mathrm{PQ}=$	$\mathrm{QR}=$	$\mathrm{PR}=$	$\hat{P}=$	$P \hat{\mathrm{Q}} R=$	$P \hat{R} Q=$

b. What sides and angles are equal in both triangles? \qquad
c. Are the triangles congruent?
d. What can you conclude if, in two triangles, two pairs of corresponding sides are equal but the pair of corresponding equal angles are non-included angles: \qquad .

Activity 3

a. Use applet "SAA" to complete the table below:

Triangle	Slider $\mathrm{a}=5$; $\alpha=45^{\circ}$ and $\boldsymbol{\gamma}=30^{\circ}$					
$\triangle \mathrm{ABC}$ (Green)	$\mathrm{AB}=5$	$\mathrm{BC}=$	$\mathrm{AC}=$	$\hat{A}=45^{\circ}$	$\hat{B}=30^{\circ}$	$\hat{C}=$
$\triangle \mathrm{PQR}$ (Pink)	$P Q=5$	QR =	PR =	$\hat{P}=45^{\circ}$	$\widehat{Q}=30^{\circ}$	$\hat{R}=$
	Slider $\mathrm{a}=6$; $\alpha=50^{\circ}$ and $\boldsymbol{\gamma}=35^{\circ}$					
$\triangle \mathrm{ABC}$ (Green)	AB $=6$	$\mathrm{BC}=$	$\mathrm{AC}=$	$\hat{A}=50^{\circ}$	$\widehat{B}=35^{\circ}$	$\hat{C}=$
\triangle PQR (Pink)	$P \mathrm{P}=6$	QR =	PR =	$\hat{P}=\mathbf{5 0}{ }^{\circ}$	$\widehat{Q}=35^{\circ}$	$\hat{R}=$
	Slider $\mathrm{a}=7$; $\alpha=55^{\circ}$ and $\boldsymbol{\gamma}=40^{\circ}$					
$\triangle \mathrm{ABC}$ (Green)	$\mathrm{AB}=7$	$\mathrm{BC}=$	$\mathrm{AC}=$	$\hat{A}=55^{\circ}$	$\widehat{B}=40^{\circ}$	$\hat{C}=$
\triangle PQR (Pink)	$P Q=7$	QR =	PR =	$\hat{P}=55^{\circ}$	$\widehat{Q}=40^{\circ}$	$\hat{R}=$

b. What can you conclude about the corresponding sides and angles of the triangles?
c. What can you conclude about $\triangle A B C$ and $\triangle P Q R$ in each case.
d. If, in two triangles, one pair of corresponding sides are \qquad and two pairs of corresponding angles are \qquad , then the triangles are \qquad .This is written as \qquad .

Activity 4

a. Use applet "RHS" to complete the table below:

Triangle	Slider $\mathbf{a}=3,5 ; \mathbf{~}=\mathbf{4}$					
$\triangle \mathrm{ABC}$ (Green)	$\mathrm{AB}=3.5$	$B C=4$	$\mathrm{AC}=$	$\hat{A}=90^{\circ}$	$\hat{B}=$	$\hat{C}=$
$\triangle \mathrm{PQR}$ (Pink)	$P Q=3.5$	$Q \mathrm{R}=4$	$\mathrm{PR}=$	$\widehat{P}=90^{\circ}$	$\widehat{Q}=$	$\hat{R}=$
	Slider $\mathrm{a}=4$; b = 5					
$\triangle \mathrm{ABC}$ (Green)	$A B=4$	$B C=5$	$\mathrm{AC}=$	$\hat{A}=90^{\circ}$	$\widehat{B}=$	$\hat{C}=$
Δ PQR (Pink)	$\mathrm{PQ}=4$	$Q \mathrm{R}=5$	$\mathrm{PR}=$	$\hat{P}=90^{\circ}$	$\widehat{Q}=$	$\hat{R}=$
	Slider $\mathrm{a}=4.5$; $\mathrm{b}=6$					
$\triangle \mathrm{ABC}$ (Green)	$\mathrm{AB}=4.5$	$B C=6$	$\mathrm{AC}=$	$\hat{A}=90^{\circ}$	$\hat{B}=$	$\hat{C}=$
Δ PQR (Pink)	$P Q=4.5$	$Q \mathrm{R}=6$	PR =	$\hat{P}=90^{\circ}$	$\widehat{Q}=$	$\hat{R}=$

b. What can you conclude about the corresponding sides and angles of the triangles?
c. What can you conclude about $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ in each case. \qquad
d. If, in two right-angled triangles, the hypotenuse of each triangle is equal and a pair of corresponding sides are \qquad then the triangles are \qquad . This is written as \qquad

