Investigation on congruency of triangles

Two triangles are congruent if they are identical in size and shape. This means that, the corresponding sides and angles of the two congruent triangles are equal.

Whenever two triangles are congruent, we can state the following: $\Delta ABC \equiv \Delta FGD$

Note: An included angle in a triangle is formed by two sides of a triangle.

Activity 1i.

a. Use the applet "Discover SSS" to complete the table below:

Triangle	Slider a = 3 and b = 4.5					
ΔABC (Green)	AB = 3	AC= 4.5	BC= 4.36	Â=	$\hat{B} =$	$\hat{C} =$
ΔFGD (Blue)	DF = 3	DG = 4.5	FG = 4.36	$\widehat{D} =$	$\widehat{F} =$	$\hat{G} =$
	Set Slider a = 3.8 and b = 5					
ΔABC (Green)	AB = 3.8	BC = 5.01	AC = 5	Â=	\widehat{B} =	<i>Ĉ</i> =
ΔFGD (Blue)	DF = 3.8	FG = 5.01	DG = 5	\widehat{D} =	\widehat{F} =	\widehat{G} =
	Set Slider a = 4.6 and b = 5.5					
ΔABC (Green)	AB = 4.6	BC = 5.68	AC = 5.5	Â=	\widehat{B} =	<i>Ĉ</i> =
ΔFGD (Blue)	DF = 4.6	FG = 5.68	DG = 5.5	\widehat{D} =	\widehat{F} =	\hat{G} =

b. Using the measurements in the table above and the applet, fill in the gaps:

AB _____ DF; AB is opposite angle _____ and DF is opposite angle_____; and \hat{C} ____ \hat{G} _

BC _____FG; BC is opposite angle _____ and FG is opposite angle _____and \hat{A} _____ \widehat{D}

- AC _____DG; AC is opposite angle _____ and DG is opposite angle _____; and \hat{B}
- c. What can you say about the corresponding angles in each case?_____

d. What can you conclude about ΔABC and ΔFGD in each case?_____

e. If the corresponding sides of two triangles are _____; then the triangles are _____. This is written as ._____

Activity 1ii.

a. Use applet "Does AAA work" to complete the table below:

<u>Triangle</u>	Slider a =2 and b = 3.5						
ΔΑΒC	AB =	BC=	AC=	Â=	\hat{B} =	Ĉ=	
ΔFGD	DF =	FG =	DG =	\widehat{D} =	\widehat{F} =	\widehat{G} =	
	Slider a = 3 and b = 4						
ΔΑΒC	AB =	BC=	AC=	Â=	\widehat{B} =	<i>Ĉ</i> =	
ΔFGD	DF =	FG =	DG =	\widehat{D} =	\widehat{F} =	\widehat{G} =	

- b. Using the measurements in the table above, complete the gaps
- \hat{C} _____ \hat{G} but AB _____ DF
- \hat{A} _____FG
- $\hat{\underline{B}}$ \hat{F} but AC _____ DG and
- c. What can you conclude about ΔABC and ΔFGD in each case?_____
- d. In two triangles, three corresponding angles may be equal but ______

Activity 2i

a. Use applet "Discover SAS" to complete the table below:

Triangle	Slider a = 3.5 and α = 45°					
ΔABC (Green)	AB = 3.5	BC=	AC=4.87	Â= 45 °	<i>B</i> =	<i>Ĉ</i> =
Δ PQR (Pink)	PQ = 3.5	QR =	PR = 4.87	<i>P̂</i> =45 °	\widehat{Q} =	R=
	Set Slider a = 4.5 and α = 60°					
ΔABC (Green)	AB = 4.5	BC=	AC=6.26	Â= 60 °	\widehat{B} =	<i>Ĉ</i> =
Δ PQR (Pink)	PQ = 4.5	QR =	PR = 6.26	<i>P</i> = 60 °	\widehat{Q} =	R=
	Set Slider a = 5.5 and α = 75°					
ΔABC (Green)	AB =	BC=	AC=	Â=	<i>B</i> =	<i>Ĉ</i> =
Δ PQR (Pink)	PQ =	QR =	PR =	Ŷ=	\widehat{Q} =	R=

- b. What can you conclude about the corresponding sides and angles of ΔABC and ΔPQR in each case.
- c. If, in two triangles, two pairs of corresponding sides are _____and the corresponding pair of included angles are _____. Then the two triangles are _____. This is written as

Activity 2ii

a. Use applet "Does SSA work" to complete the table below:

Triangle						
ΔPQS	PQ =	QS=	PS=	<i>Ŷ</i> =	$P\hat{Q}S=$	PŜQ=
ΔPQR	PQ =	QR =	PR =	<i>Ŷ</i> =	$P\hat{Q}R=$	PÂQ=

- b. What sides and angles are equal in both triangles?_____
- c. Are the triangles congruent?

.

d. What can you conclude if, in two triangles, two pairs of corresponding sides are equal but the pair of corresponding equal angles are non-included angles: ______.

Activity 3

a. Use applet "SAA" to complete the table below:

Triangle	Slider a = 5 ; α = 45° and γ = 30°						
ΔABC (Green)	AB = 5	BC=	AC=	Â= 45 °	<i>B</i> = 30 °	<i>Ĉ</i> =	
Δ PQR (Pink)	PQ = 5	QR =	PR =	<i>P̂</i> =45 °	<i>Q</i> ̂= 30 °	R=	
	Slider a = 6	Slider a = 6 ; α = 50° and γ = 35°					
ΔABC (Green)	AB = 6	BC=	AC=	Â= 50 °	<i>B</i> = 35 °	<i>Ĉ</i> =	
Δ PQR (Pink)	PQ = 6	QR =	PR =	<i>P</i> = 50 °	Q ̂= 35 °	R=	
	Slider a = 7 ; α = 55° and γ = 40°						
ΔABC (Green)	AB = 7	BC=	AC=	Â= 55°	<i>B</i> = 40 °	<i>Ĉ</i> =	
Δ PQR (Pink)	PQ = 7	QR =	PR =	<i>P</i> = 55 °	<i>Q</i> ̂= 40 °	R=	

b. What can you conclude about the corresponding sides and angles of the triangles?

c. What can you conclude about ΔABC and ΔPQ	R in each case		
d. If, in two triangles, one pair of corresponding	g sides are	and two pairs of	
corresponding angles are	, then the triang	les are	This
is written as			

Activity 4

Triangle	Slider a = 3,5 ; b = 4						
ΔABC (Green)	AB = 3.5	BC = 4	AC =	Â= 90°	<i>B</i> =	<i>Ĉ</i> =	
Δ PQR (Pink)	PQ = 3.5	QR = 4	PR =	<i>P̂</i> =90 °	\widehat{Q} =	<i>R</i> =	
	Slider a = 4 ; b = 5						
ΔABC (Green)	AB = 4	BC= 5	AC=	Â= 90°	\hat{B} =	<i>Ĉ</i> =	
Δ PQR (Pink)	PQ = 4	QR = 5	PR =	<i>P̂</i> = 90 °	\widehat{Q} =	R=	
	Slider a = 4.5 ; b = 6						
ΔABC (Green)	AB = 4.5	BC= 6	AC=	Â= 90°	<i>B</i> =	<i>Ĉ</i> =	
Δ PQR (Pink)	PQ = 4.5	QR = 6	PR =	<i>P</i> ̂ = 90 °	\widehat{Q} =	R=	

a. Use applet "RHS" to complete the table below:

b. What can you conclude about the corresponding sides and angles of the triangles?

c. What can you conclude about Δ ABC and Δ PQR in each case._____

d. If, in two right-angled triangles, the hypotenuse of each triangle is equal and a pair of corresponding sides are ______. This is written as ______.