Task C: Surface of revolution

To create a dynamic worksheet to explore how a surface of revolution is generated.

Step	Objects to be created	Action
1.	A function of x to be discussed	 Choose "3D Graphics" module. Choose to hide <i>xOy</i> plane. Select the properties of axes. Choose "y-axis is vertical". Preferences - 3D Graphics Basic XAxis yAxis ZAxis Grid Projection Dimensions x Min: -3.3234 x Max: 3.3234 y Min: -6.16304 y Max: 6.18304 z Min: -1.8234 z Max: 4.8234 Axes Show Axes y-axis is vertical Label Style Serif Bold Italic Coloured Axes • In the "View" menu, choose to open "Graphics" view. In "Graphics" window, enter and arbitrary function f(x) = x ² in the input field. Then create an input box with caption "f(x) = ", and link the box to f(x). Hide the graph of y = f(x).
		• In "3D Graphics" window, define a parametric function $c(t)$ by

Step	Objects to be	Action
	created	
		inputting " $c(t)$ =curve[t,f(t),0,t,-5,5]". Change the colour of the graph to green.
		• Teachers and students can key in other functions in <i>x</i> for other curves.

Step	Objects to be created	Action
2.	The surface of revolution and solid of revolution of the curve about y-axis and x- axis.	 In "Graphics" window, create two sliders "p" and "d", with the interval settings as follows respectively: Interval Slider Animation Min: 0 Max: 5 Increment: 0.1
		 In "3D Graphics" window, define two points <i>P</i> and <i>P</i>' by inputting "P=c(p)" and "P'=c(p+d)" respectively. In "3D Graphics" window, define a parametric function <i>c</i>_1(<i>t</i>) by inputting "c_1(t)=curve[t,f(t),0,t,p,p+d]". Change the colour of the curve <i>c</i>_1(<i>t</i>) to blue. In "Graphics" window, create a slider of angle α from 0° to 360°. In "3D Graphics" window, define a surface a = Surface(c_1, α, yAxis). Create two points H=(0,f(p),0) and H'=(0,f(p+d),0). Construct polygon PP'H'H. By using the "Rotate around Line" button, rotate the polygon PP'H'H around y-axis, with angle of rotation being α. In "Graphics" window, create a check box, labelled with "Rotation about y-axis" and link to Angle α, H, H', polygon PP'H'H and its edges, and Surface a. Repeat the same process to create "Rotate about x-axis". In
		 "Graphics" window, create a slider of angle β from 0° to 360°. In "3D Graphics" window, define a surface a_1 = Surface(c_1, α, xAxis). Create two points V=(p,0,0) and V'=(p+d,0,0). Construct polygon PVV'P'. By using the "Rotate around Line" button, rotate the polygon PVV'P' around x-axis, with angle of rotation being β. In "Graphics" window, create a check box, labelled with "Rotation about x-axis" and link to Angle β, V, V', polygon PVV'P' and its edges, and Surface a_1.

