Task C: Surface of revolution

To create a dynamic worksheet to explore how a surface of revolution is generated.

Step	Objects to be created	Action
1.	A function of x to be discussed	- Choose "3D Graphics" module. Choose to hide $x O y$ plane. Select the properties of axes. Choose " y -axis is vertical". - In the "View" menu, choose to open "Graphics" view. In "Graphics" window, enter and arbitrary function $f(x)=x^{2}$ in the input field. Then create an input box with caption " $\mathrm{f}(\mathrm{x})=$ ", and link the box to $f(x)$. Hide the graph of $y=f(x)$. - In "3D Graphics" window, define a parametric function $c(t)$ by

Step	Objects to be created	Action inputting " $\mathrm{c}(\mathrm{t})=$ curve $\mathrm{t}, \mathrm{f}(\mathrm{t}), 0, \mathrm{t},-5,5]$ ". Change the colour of the	

Step	Objects to be created	Action
2.	The surface of revolution and solid of revolution of the curve about y-axis and x axis.	- In "Graphics" window, create two sliders " p " and " d ", with the interval settings as follows respectively: - In "3D Graphics" window, define two points P and P ' by inputting " $P=c(p)$ " and " P ' $=c(p+d)$ " respectively. - In "3D Graphics" window, define a parametric function $c_{-} 1(t)$ by inputting "c_1(t)=curve[t,f(t),0,t,p,p+d]". Change the colour of the curve $c _1(t)$ to blue. - In "Graphics" window, create a slider of angle α from 0° to 360°. In "3D Graphics" window, define a surface $\mathrm{a}=$ Surface(c_1, $\alpha, \mathrm{yAxis})$. Create two points $\mathrm{H}=(0, \mathrm{f}(\mathrm{p}), 0)$ and $\mathrm{H}^{\prime}=(0, \mathrm{f}(\mathrm{p}+\mathrm{d}), 0)$. Construct polygon PP'H’H. By using the "Rotate around Line" button, rotate the polygon PP'H'H around y-axis, with angle of rotation being α. - In "Graphics" window, create a check box, labelled with "Rotation about y-axis" and link to Angle α, H, H', polygon PP'H'H and its edges, and Surface a. - Repeat the same process to create "Rotate about x-axis". In "Graphics" window, create a slider of angle β from 0° to 360°. In "3D Graphics" window, define a surface a_1 = Surface(c_1, α, xAxis). Create two points $V=(p, 0,0)$ and $V^{\prime}=(p+d, 0,0)$. Construct polygon PVV'P'. By using the "Rotate around Line" button, rotate the polygon PVV'P' around x -axis, with angle of rotation being β. - In "Graphics" window, create a check box, labelled with "Rotation about x-axis" and link to Angle $\beta, \mathrm{V}, \mathrm{V}^{\prime}$, polygon PVV'P' and its edges, and Surface a_1.

[^0]

[^0]: * 3D Graphics

