We can construct a right triangle with $R-r$ as the hypotenuse, and $R / 2$ and $r+h$ as the sides. Using the Pythagorean Theorem,
$(R-r)^{2}=\left(\frac{R}{2}\right)^{2}+(r+h)^{2}$
When we foil we get,
$R^{2}-2 R r+r^{2}=\frac{R^{2}}{4}+r^{2}+2 r h+h^{2}$
When we move some things around and simplify we get,
$-2 R r-2 r h=-R^{2}+\frac{R^{2}}{4}+h^{2}$
By factoring and combining like terms we arrive at,
$r(-2 R-2 h)=\frac{-R^{2}}{4}+h^{2}-R^{2}$
Then on the right side put everything over 4
$r(-2 R-2 h)=\frac{-3 R^{2}+4 h^{2}}{4}$
To solve for r, I divide by ($-2 R-2 h$) on both sides and get, $\frac{-3 R^{2}+4 h^{2}}{-8(R+h)}$ which equals $\frac{3 R^{2}-4 h^{2}}{8(R+h)}$. Thus $\mathrm{r}=\frac{3 R^{2}-4 h^{2}}{8(R+h)}$.

