Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Addition Words + Above Accumulate Add, Add up, Added to Additional Addends Also Altogether

And

Appreciate

Ascend

Plus And Total of Altogether Increased By Combined Add Sum Together More Than Added To In All Make

Bigger (than) Both Combine(d), Collect(ed) Credit Deposit Find the total Further Gain Go (went) up Greater (than) Grew by, Grow by How many in all How much In addition to In all, all together In excess Including Increase(d) (by), Increment Join Larger (than) Lengthen (by), longer (by) Make, Matches More (than) Net Older (than) On top of Perimeter Plus Raise, Raised by, Rise Replace, Save Sum (of), summation Tally (up) Together Total (is) Wider (than) Years older (than) + **>** plus^{*}, <u>positive</u>

Page. 1 of 16

Subtraction Words – Below Subtract Gave Take Away Change Apiece Decrease By Fewer Minus Cut (by) Area Shared Fewer Than Less Than Difference Less Debit Decline, Declined by By Decrease(d) by, Decrement Deduct, Deducted from Each Depreciate Descent Every Detract Difference (of) Different (by) Diminished (by) Discount Down by Dropped by Dwindle Fall. Fell Farther Fewer (than) Gave, Go (went) down Grow down How many left (or less) Per How much more (less) Left over Less (than) Lost Lower, lowered by Minuend Minus Volume Narrower (than) Nearer Need to Reduce, Reduced by Remain(s)(der) (-ing) Remove Shorter (by), shorter than Smaller (than) Subtract. Subtracted from Subtrahend Take away, take from Withdraw(al) Years younger (than) $- \rightarrow \text{minus}^*$.

<u>negative</u> -5, <u>opposite</u> -(5)

Negative Positive -s -i -i i

01 English Terms-Algebra Terms

Multiplication Words •× a() * Amplify, Amplified by As much Double, Doubled, Twice (2 times) Equal groups Double Product Multiplied By OF Factors Increased By a Factor Multiple Fraction of Gain by a factor of Go (went) up by a factor of Groups of Half, Halve Increase(d) by a factor of Intensified by, Intensify by Interest on Lots of Magnified by Multiple, Multiply, Multiplied by Of (in connection with fractions, %) Percent (of), % Product (of) Quadruple(d) (4 times) Thrice, Triple(d) (3 times) Twice (2 times), Double Times (as much) (larger) (more) Times older

Operator	Function	
+	Addition [*] (Add)	
	Subtraction [*] (Minus)	
$\times \bullet * a(b)$	Multiplication (Times)	
$\begin{array}{c} \mathbf{a} \div \mathbf{b} \\ \mathbf{a} / \mathbf{b} \\ \mathbf{b} \setminus \mathbf{a} \\ \mathbf{b} \overline{\mathbf{a}} \end{array}$	Division Ratio	
a : b <u>a</u> <u>b</u>	Fraction	
Condition	Location in Space	
+	Positive	
_	Negative or Opposite	

Is an **operator** when between 2 values, otherwise it is a **condition** when in front.

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Division Words $\div \int \frac{n}{d}$ n:d Average (sum of list of values) +#values Cut by a factor of Decline(d) by a factor of Decrease(d) by a factor of Diminished by a factor of Distribute Divide, Divided by $(25 \div 5 = 5)$, Divided into (5) $\overline{25} = 5$) Dividend Divisor Down by a factor Dropped by a factor of Each Equal pieces (parts/groups) Evenly divide(d) Every Fifth Quotient of Per Ratio of Divided By Half Divisor Find per Divided Into Percent Split Up Finds each Fraction Go (went) down by a factor of Halved, Half How many times Into Out of Over Partition times Parts Per Ouarter Quotient (of) Ratio (of) Reciprocal (of) Reduce(d) by a factor of Share(d) (split) equally Smaller by a factor of Split (up), Separated into groups Subdivide Times less (smaller) (younger) Times more (bigger) (older)

The Quantity of Twice the sum of Times the sum of Times the difference of Plus the difference of

Page. 2 of 16

Relationship Words: Equals = Alike Is Are Were Was Amounts to Are (equal) Will Be Yields Sold For Balance(s) (d) Coincides (with) Corresponds (to) Equal, equals (to), Equivalent (to) Even Gives (a result of), Giving Identical to Is (equal), Are, Was, Will be Matches Represents Result (is), Results (are), Results in Sold for Same (result) as Was (equal), were (equal) Will be (equal) Yields

Inequalities

Approximately equal \approx \bigcirc Is not equal \neq \bigcirc Exceeds, above > \bigcirc Is greater (than) > \bigcirc Is more (than) > • Is greater (than) or equal \geq • Is No less than >• Is At Least \geq \bigcirc Is less (than), Below < \bigcirc Is fewer (than) < • Is less (than) or equal \leq • Is At Most, Maximum \leq • Is No more than, Minimum \leq • Does not Exceed \leq • Is not greater (than) \geq ≯ means ≤ \bigcirc Is not greater (than) or equal \geqq ≱ means < • Is not less (than) \blacktriangleleft ≮ means ≥ \bigcirc Is not less (than) or equal \leq

Math Symbols Absolute Value |a| A quantity of (), sum/difference of Grouping symbols (object of prepositional phrases) Parenthesis (); Brackets []; Braces { } Empty set \emptyset or $\{\}$ Implies \Rightarrow or \rightarrow Infinity (unlimited) ∞ Is similar to \sim Is congruent \cong Is equivalent to \Leftrightarrow or \equiv (defined) Minus or Plus \mp Plus or Minus \pm Parallel || Perpendicular \perp Pi ($\pi = 3.14159265358979...$) Multiplication \bullet or \times or a b **Special Operations** $\sqrt[3]{n}$ Cube root n³ Cube Square root \sqrt{n} Square n^2 **Number Words** 0 (n)aught, nil, nothing 1 Once, ace, unique, singular 2 Deuce, duet, dyad, twice, double 3 Tierce, trey, thrice, triple, cube 4 Tetrad, quad-, fourice, quadruple 5 Pentad, quint-, quintuple 6 Sextuple, Hextuple Greek Value Latin 0 oudennulli-1 unimono-2 dibi-/du-3 tritri-4 quadrtetra-5 pentaquin(t/que-) 6 hexasexa-7 heptasepti-8 octoocto-9 no(nus/vem-) nona-

01 English Terms-Algebra Terms

≰ means >

{See graphs on the next page.}

deca-.de-

deca-

10

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Inequality vs Interval Notation

English Language	Inequality Notation	Number Line	Interval Notation
• Is Equal =	x = 6	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	[6]
O Is not equal \neq x is less than 6 and greater than 6	x ≠ 6	Image: Constraint of the second sec	$(-\infty, 6) \cup (6, \infty)$
 O Exceeds, above > O Is greater (than) > O Is more (than) > 	x > 6	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	(6, ∞)
O Is not less (than) or equal ≰ ≰ means >	x ≰ 6		
• Is greater (than) or equal \geq			
 Is No less than ≥ Is At Least ≥ 	$x \ge 6$	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	[6, ∞)
 Is not less (than) ≮ ≮ means ≥ 	x ≮ 6		
 O Is less (than), Below O Is fewer (than) 	x < 6	•	$(-\infty, 6)$
O Is not greater (than) or equal ≱ ≱ means <	x <u>≯</u> 6	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	(\otimes, 0)
 Is less (than) or equal ≤ Is At Most, Maximum ≤ Is No more than, Minimum ≤ Does not Exceed ≤ 	x <u>≤</u> 6	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	(-∞, 6]
 Is not greater (than) ≯ ≯ means ≤ 	x ≯ 6		
x is between a and b	-3 < x < 6	O O O O O O O O	(-3, 6)
x is between a and b, including a	$-3 \le x \le 6$		[-3, 6)
x is between a and b, including b	$-3 < x \leq 6$		(-3, 6]
x is between a and b, inclusive	$-3 \le x \le 6$.0-9-8-7-6-5-4-3-2-1012345678910	[-3, 6]
x is less than a or x is greater than b	x < -3 or x > 6	Image: Constraint of the state of	$(-\infty, -3) \cup (6, \infty)$
x is less than or equal to a or x is greater than b	$x \le -3$ or $x > 6$	• • • • • • • • • • • • • • • • • • •	$(-\infty,-3] \cup (6,\infty)$
x is less than a or x is greater than or equal b	$x < -3 \text{ or } x \ge 6$	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	$(-\infty,-3) \cup [6,\infty)$
x is less than or equal to a or x is greater than or equal to b	$x \le -3$ or $x \ge 6$	• 10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	$(-\infty,-3] \cup [6,\infty)$

Interactive Lesson on 'line-graphs': <u>https://www.geogebra.org/m/mEs37yMj#material/ns2xr6na</u> **Set Builder Notation** is occasionally used with inequality notation as follows: {x | <u>Use either notation above</u>}.

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems. https://en.wikipedia.org/wiki/Arithmetic

Addition, denoted by the symbol +, is the most basic operation of arithmetic. In its simple form, addition combines two numbers, the <u>addends or terms</u>, into a single number, the <u>sum</u> of the numbers (such as 2 + 2 = 4 or 3 + 5 = 8)

Subtraction, denoted by the symbol –, is the inverse operation to addition. Subtraction finds the *difference* between two numbers, the *minuend* minus the *subtrahend*: D = M - S. Resorting to the previously established addition, this is to say that the difference is the number that, when added to the subtrahend, results in the minuend: D + S = M.

Multiplication, denoted by the symbols \times or \cdot , is the second basic operation of arithmetic. Multiplication also combines two numbers into a single number, the *product*. The two original numbers are called the *multiplier* and the *multiplicand*, mostly both are simply called *factors*.

Division, denoted by the symbols \div or /, is essentially the inverse operation to multiplication. Division finds the *quotient* of two numbers, the *dividend* divided by the

divisor. Any dividend <u>divided by zero</u> is undefined. For distinct positive numbers, if the dividend is larger than the divisor, the quotient is greater than 1, otherwise it is less than or equal to 1 (a similar rule applies for negative numbers). The quotient multiplied by the divisor always yields the dividend.

Arithmetic operations

<u>Binary operations</u> require two values to be used for a solution. The solid framed boxes demonstrate the <u>binary nature</u> of inverse operations. These operations undo each other, i.e., adding 2 + 3 = 5 results in two inverse operations of subtracting 5 - 3 = 2 or 5 - 2 = 3. Multiplication and Division as well as Exponentiation and Roots have similar results. Inverse operation reverses an operation's order. These operations have equal strength and the order of use is from left to right. **PE(MD)(AS)** or **G(ER)(MD)(AS)**

Page. 4 of 16

5+2=7Inverses 7-2=57-5=2

 $8 \times 6 = 48$ Inverses $48 \div 6 = 8$ $48 \div 8 = 6$

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Many get the following mathematical statements incorrect by not using the correct vocabulary/syntax:

Problem	Verbal Math Statement (use shows you understand)	Using signed numbers
5 + 6 = 11	five <mark>plus</mark> six	5 + 6 = 11
5 + -6 = -1	five plus the opposite of six; five plus the negative of six	5 - 6 = -1
5-6	five minus six	5 - 6 = 5 + (-6) = -1
5 – –(6)	five minus the opposite of six	5(6) = 5 + 6 = 11
5 - (-6)	five minus negative six	5 - (-6) = 5 + 6 = 11
5(-6)	five minus the opposite of negative six	5(-6) = 5 - 6 = -1

Learning the proper vocabulary for mathematics in the use the plus (+) or minus (-) symbols will assist proper understanding of mathematical symbols and understanding.

How a sign is used in a phrase sets the meaning of that sign. **Plus**, what does it mean?

The *plus* (+) sign can mean different things, depending on the context.

- It means to add the two values which are separated by it, a binary operation. { a plus b }
- It is a <u>condition</u> of being a **positive** number which is on the right-hand side of zero on a number line. Written "positive signs" are <u>optional</u>, i.e., ⁺22 and 22 are equivalent; **positivity** is a condition.

	1	lega	tive				Po	ositiv	/e	
-5	-4	-3	-2	-1	ò	1	2	3	4	5

Minus, what does it mean?

The minus (-) sign can mean three different things, depending on the context.

- It means to **subtract** the two values separated by it. Between two expressions, it means <u>subtract</u> the second expression from the first one. For example, x 3 means subtract 3 from x. It is a binary operation, not a condition.
- It is a <u>condition</u> of being a **negative** number which is on the left-hand side of zero on a number line. Example: ⁻² can mean negative 2. Negative numbers <u>require</u> a negative sign; <u>negativity</u> is a condition.
- Or it is a <u>condition modifier</u>, asking for the **opposite** of the value current condition. The opposite of a number is what you add to it to get zero. Example: -2 can mean the opposite of 2, which is negative 2, since 2 + -2 = 0. Likewise, -x means the opposite of x, and x + -x = 0.
 - This third condition of opposite allows one to change any subtraction problem into an addition problem. Meaning that we can apply certain freedoms to arithmetic the subtraction does allow. Everyday usage: a b = a + (-b) is a reminder for students of the rule.

Adapted from: Algebra: Themes, Tools, Concepts © 1994 Anita Wah and Henri Picciotto

Μ	lath Symbo	ols video: <u>ht</u>	tps://www https://ma	youtube.com/athsbot.com/a	n/watch?v=xvcwdh9K9Zw activities/wordedExpressions The reading of an English	Operator Examples: Addition Subtraction Plus: 3 + 7 Minus: 7 3
	P Parenthesis	E Exponents	$(M D) \times \text{or} \div$	(A S) + or –	statement, then writing the equivalent math statement	Multiplication Division Multiply: 3×7 Divide: $21 \div 7$
{ } []() Implicit uses m ⁿ v	$\mathbf{m^n}\sqrt[n]{\mathbf{m}}$ in parenthesis are dor	× or ÷	A B Cron (c)2023 + Ora-	is a daily basic skill need in life.	Condition Examples:	
	Grouping G	Exponents or Roo (E R)	ts × or ÷ (M D)	+ or – (A S)		Condition Modifier Examples:
Th	e major groups a	es: expressions in di numerators, deno are Grouping, Exp,	vidends, radicands ominators, expone /Roots, Mult/Di	s, absolute value, nts, etc. iv, Add/Sub (GEM/	A).	Opposite of 8: $-(^+8) = ^-8$ Opposite of $^-9$: $-(^-9) = ^+9$
W	hen all groups ar ne sign of a si	e gone perform EN gned number ha	MA on remainde	r. precedence.		

Page. 5 of 16

01 English Terms-Algebra Terms

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Remember these facts:

- A. Prime numbers have exactly two factors, one factor is the number 1 and the other factor is that number. $5 = 5 \times 1$ or $1 \times 5 = 5$ Set of primes is $\{2, 3, 5, 7, 11, 13, 17, 19, ...\}$
- B. **Composite numbers** have more than two factors.
- C. All <u>equations and inequalities</u> sentences have a syntax like English, **Expression Verb** Expression:
- D. Basic arithmetic rules (laws) These all apply in every mathematical field.
 - a. Commutative Properties: a + b = b + a or ab = ba
 - b. Associative Properties: a + (b + c) = (a + b) + c or a(bc) = (ab)c
 - c. <u>Identity</u> Properties: a + 0 = a or $a \times 1 = a$
 - d. <u>Inverse</u> Properties: a + (-a) = 0 or $a \times \frac{1}{a} = 1$, if $a \neq 0$
 - Signed Number Arithmetic: a b = a + (-b); uses the additive inverse property Simplifying fraction division: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$; uses the reciprocal property: $\frac{a}{b} \times \frac{b}{c} = 1$
 - e. Distributive Property: $a(b \pm c) = ab \pm ac$; reversing this is called factoring where we do this: $ab \pm bc$ $ac = a(b \pm c)$. (\pm means you can work with either + or -.)
 - f. <u>Multiplicative Property of Zero</u>: $a \times 0 = 0$

E. Remember:

- a. Addition and Subtraction are inverse operations!
- b. Multiplication and Division are inverse operations!
- c. Exponents and Roots are inverse operations!
- F. Basic mathematical skills needed to pass HSE exams:
 - Whole number arithmetic facts to the 16s, all factors of each product, square to 25, and cubes to 10
 - Adding and Subtracting Fractions (See 02 GED Math Ref Book, p.7)
 - Signed (Directed) Number arithmetic—numbers with conditional location symbols: positive (+) or negative (-)
 - \circ <u>opposite</u> is a conditional modifier—opposite (-) changes a sign to its opposite condition, negative become positive and positive becomes negative
 - Binary operations—two value operations with an arithmetic operator: plus (+), minus (-), times (\times) , divide (÷)

o Value1 Operator Value2

• Absolute Value^{*}—the value of a signed number without any conditional symbols:

$$|n| = \begin{cases} n, & \text{if } n \ge 0\\ -n, & \text{if } n < 0 \end{cases}$$

 $\circ |-5| = 5$ or |5| = 5 {"absolute value of negative five equals five" or "absolute value of five" equals five"}

 \circ When using absolute value, the result is the **distance** between to values on a number line. If a word problem uses the word "distance" or "implies a distance", take the **absolute value** of answer. The HSE/GED test does not do diagonal distances. {But by using a variation of the Pythagorean Theorem, it is done later in math.}

• The distance from "a" to "b" is $|\mathbf{a} - \mathbf{b}| \equiv |\mathbf{b} - \mathbf{a}|$. {Distance Formula}

If
$$a = -6$$
 and $b = +8$, $\begin{vmatrix} -6 - 8 \\ | = | -6 + -8 \\ | = | -14 \\ | = 14 \end{vmatrix}$
Algebra uses and enhances by these rules.

Expression	Verb	Expression
3x + 1	=	5x - 7
3x + 1	<	5x - 7

0-

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Fractions, Ratios, and Rates

<u>Fractions</u> compare *like items* where you have the number of parts over the whole number of parts. (Fractions are rational numbers formed by an integer over a non-negative number.)

 $\frac{part}{whole}$ – compare like items (fraction)

A <u>ratio</u> is a comparison of 2 or more numbers. The numbers may be <u>like or</u> <u>unlike items</u>, the items in the numerator may not be the same type of items in the denominator.

people:animals - comparing unlike items (ratio)

birds: grains of sand in the air or $\frac{birds}{arains \ of \ sand}$

Fractions and ratios do not normally use decimals; rates can have decimals in the numerators; the denominators are 1. The unit is a *ratio of units*.

Hence, "All ratios are fractions, but not all fractions are ratios."

All ratios must always be in fraction form unless they represent a <u>Rate</u>. The rate is miles per hour (mph) or miles per gallon (mpg). For rates, the denominator is 1, and only rates can have decimals. **Rate compares** something to one thing...but it is a ratio, the units allow the user to not use a 1 in the denominator: mpg, mph. But if I have four people per pizza the fraction would $\frac{4}{7}$ or 4:1, but not 4.

miles:gallon — compares fuel consumption per mile (rate)

A **proportion** occurs when two or more ratios are equivalent. 4:6 :: 3:9 :: 12:36.

"There are some fraction rules that ratios do not follow. Do not change a ratio that is an improper fraction to a mixed number. Also, if a ratio in fraction form has a denominator of 1, do not write it as a whole number. Leave it in fraction form." Kaplan, p 260.

Fractions vs Decimals

Decimals are base-ten positional numeral system. While decimal systems have been in use over 2000 years, modern methods were invented less than 500 years ago. They did not become in common usage until after 1790 when the French mandated the metric system in France. **Rational decimals** can be represented by decimal fractions of the form $\frac{a}{10^n}$, where "a" is an integer, and "n" is a non-negative integer. Rational decimals are either **terminating** or **repeating**. All rational decimals can be represented in a reduced fraction form. If a decimal number cannot be represented in a reduced fraction form, it is called an **irrational decimal**, and the decimal value never terminates or repeats.

Terminating Decimals		Repeating Decimals		Irrational Decimals	
Decimal	Fraction	Decimal	Fraction	Number	Decimal
0.5	$\frac{1}{2}$	0.333333333	$\frac{1}{3}$	π	3.14159265359
0.375	$\frac{3}{8}$	0.142857142	$\frac{1}{7}$	$\sqrt{3}$	1.73205080757
3.35	$3\frac{7}{20}$	5.272727272	$5\frac{3}{11}$	∛25	2.92401773821

"Fractions are your friend!"

Page. 7 of 16

01 English Terms-Algebra Terms

A. B. Cron©2019-2032 Free Use

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

The **absolute value** of a number is its distance from zero on a number line.

Absolute Value: $|a| = \begin{cases} a \\ -a \end{cases}$ (the answer is ALWAYS the non-negative value, no sign, page 6) Examples: |3| = 3, |-3| = 3

Finding the distance between two points on the number line:

Finding the distance between two location on a number line. $|{\rm a}$ - ${\rm b}|$

a. How far apart are the points of 5 and -6 on a number line? $\begin{vmatrix} 5 - -6 \end{vmatrix} = \begin{vmatrix} 11 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \\ -8 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \\ -8 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \\ -8 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \\ -8 \end{vmatrix} = 11$ $\begin{vmatrix} -6 \\ -8 - 5 \end{vmatrix} = \begin{vmatrix} -11 \\ -8 \end{vmatrix} = \begin{vmatrix} -11$

When you have the numbers graphed on a number line; you can count the spaces apart. However, we normally subtract the two value and take the absolute value of the difference.

Some Basic Algebraic Concepts

An **algebraic expression** uses numbers, operations, and variables to show number relations. **Variables** are letters (such as a, b, ..., x and y) that represent unknown values. Each time a letter is used within the same expression, it represents the same number. If an expression can be simplified, this needs to be done as the first step in solving for a solution.

$$3x + 5 - 2y + 4x$$

An algebraic equation consists of two expressions separated by an equality sign.

$$3c - 5 = c + 36$$

An algebraic inequality consists of two expressions separated by an inequality sign.

5y + 7 < 3y + 15

Numbers with Special Properties

Zero, 0, is the only value without a positive or negative sign. It is neutral. Zero is the Addition Identity Element

One, 1, is a factor of every number known to exist. One is the Multiplication Identity Element

Negative 1, -1, is a factor of every negative number, as is 1 is a factor of the negative number.

Math Memes:

Arithmetic is the queen of mathematics

Algebra is a way to do shortcuts in Arithmetic.

Calculus is a way to do shortcuts in Algebra.

Fractions are your Friends.

All ratios are fractions, but not all fractions are ratios.

You must **RISE** before you can **RUN**!

All functions are relations, but NOT all relations are functions.

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Most Missed Questions on the GED[®] Mathematical Reasoning test

(This page is from an official GED[®] document.)

Translation Chart @GED

The chart below gives you some of the terms that come up in many word problems. Have students use the chart to assist them in translating or "setting up" word problems into expressions or equations.

English	Math	Example	Translation
What, a number	<i>x</i> , <i>n</i> , etc.	Three more than a number is 8.	n + 3 = 8
Equivalent, equals, is,	_	Danny is 16 years old.	<i>d</i> = 16
was, has, costs	—	A CD costs 15 dollars.	<i>c</i> = 15
Is greater than	>	Jenny has more money than Ben.	j > b
Is less than	<	Ashley's age is less than Nick's.	a < n
At least, minimum	\geq	There are at least 30 questions on the	$t \ge 30$
		test.	
At most, maximum	\leq	Sam can invite a maximum of 15	<i>s</i> ≤15
		people to his party.	
More, more than,		Kecia has 2 more video games than	k = j + 2
greater, than,		John.	
added to, total,	+		
sum, increased		Kecia and John have a total of 11	k + j = 11
by, together		video games.	
Less than, smaller than,		Jason has 3 fewer CDs than Carson.	j = c - 3
decreased by,	_	The difference between Jenny's and	
difference, fewer		Ben's savings is \$75.	j - b = 75
Of, times, product of,		Emma has twice as many books	$e = 2 \times j$
twice, double, triple,		as Justin.	or
half of, quarter of	×		e=2j
	•		
	a(b)=ab	Justin has half as many books as	$j = e \times \frac{1}{2}; j = \frac{1}{2} \times e$
	*	Emma.	or
			$j = \frac{e}{2}$
Divided by, per, for,		Sophia has \$1 for every \$2 Daniel	$s = d \div 2$
out of,	÷	has.	or
ratio of to	:		$s = d/2$ or $s = \frac{d}{d}$
	n/d		2
	n		d 2
	\overline{d}	The ratio of Daniel's savings to	$d/s = 2/1 \text{ or } \frac{\pi}{s} = \frac{2}{1}$
		Sophia's savings is 2 to 1.	d:s = 2:1

Example

Jennifer has 10 fewer DVDs than Brad.

Step 1: j (has) = b (fewer) – 10 Remember, the word "has" is an equal sign and the word "fewer" is a minus sign, so: Step 2: j = b - 10

GED Testing Service® | <u>www.GEDtestingservice.com</u> © Copyright 2015 GED Testing Service LLC. All rights reserved.

01 English Terms-Algebra Terms

Translating English into Algebra Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

English Phrases	Algebraic Expression
what, a number, a value, an unknown, another number	x, y, z, n, ?
format of even numbers	2n
format of odd numbers	2n + 1
twelve more than a number {more than: reverses number order}	x + 12
a number added to eight {reverses number order}	8 + x
a number subtracted from eight	8 - x
a number increased by thirty-three	x + 33
a plus b	a + b
the total of b and c	b + c
five less than a number {less than: reverses number order}	x – 5
seven from thirteen; seven from a number {from switches order}	13 – 7; x - 7
thirteen from seven (answer is negative 6 or -6)	7-13
the difference of a number and twelve	x - 12
the difference of fourteen and a number	14 – x
b subtracted from a <i>or</i> b less than a {reverses number order}	a - b
the product of a and b {the commutative property can apply}	$a \cdot b, ab, a(b), (a)(b), a \times b$
the product of three numbers {the associative property can apply}	$a \cdot b \cdot c, a(bc), (ab)c, abc$
twice a number	2n
half (of) a number	$\frac{1}{2}x \text{ or } \frac{x}{2} \text{ or } x \div 2$
three-fourths of a number	$\frac{3}{4}x \text{ or } \frac{3x}{4} \text{ or } 3x \div 4$
Any fractional part of a number, n	$\frac{\hat{a}}{b}n \text{ or } \frac{\hat{a}n}{b} \text{ or } an \div b$
two-thirds of a number is thirty.	$\frac{2}{3}x = 30$
the square of a number or a number squared	x ²
the square of eight more than a number use ()	$(x+8)^2 = x^2 + 16x + 64$
The cube of a number or a number cube	x ³
the cube of six more than a number or less than a number use ()	$(x+6)^3$; $(x-6)^3$
the square root of a number $\sqrt{25} = 5 \text{ or } 25^{\frac{1}{2}} = 5$	$\sqrt{x} \text{ or } x^{\frac{1}{2}}$
the square root of a number and 6	$\sqrt{x+6}$
the cube root of a number $\sqrt[3]{27} = 3 \text{ or } 27^{\frac{1}{3}} = 3$	$\sqrt[3]{27} \text{ or } 27^{\frac{1}{3}}$
the two-thirds power of n $n^{\frac{2}{3}} = \sqrt[3]{n^2}$ is another way to write it	$n^{\frac{2}{3}} = (\sqrt[3]{n})^2; 27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = 9$
the cube root of a number decreased by nine	$\sqrt[3]{x-9}$
a number raised to a negative one power	$n^{-1} = \frac{1}{n}$; $9^{-1} = \frac{1}{9}$
Page. 10 of 16 01 English Terms-Algebra Terms	A. B. Cron©2019-2032 Free Use

Translating English into Algebra Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems				
English Phrases	Algebraic Expression			
a number raised to the negative second power	$n^{-2} = \frac{1}{n^2}$; $6^{-2} = \frac{1}{6^2}$			
a reciprocal of a number to the negative 2 power	$\frac{1}{n^{-2}} = n^2; \ \frac{1}{3^{-2}} = \frac{1}{9^{-1}} = 9$			
a value raised to the negative power of a number	$x^{-n} = \frac{1}{x^n}$			
seven more (or less) than the square of a number	$x^2 + 7 (or x^2 - 7)$			
twelve percent of a number (% means $\frac{1}{100}$)	12% <i>n</i> or $\frac{12}{100}$ <i>n</i> or 0.12 <i>n</i>			
forty-five times a number	45x			
seven times the sum of a number and twelve use ()	7(x+12) = 7x + 84			
eight times the difference of a number and seven use ()	8(x-7) = 8x - 56			
the quotient of a number and twelve	$\frac{x}{12}$			
the quotient of seventeen and a number	$\frac{17}{x}$			
<i>a</i> divided <i>b</i> , the quotient of <i>a</i> and <i>b</i> , <i>b</i> divided into <i>a</i>	$a \div b; \frac{a}{b}; b) \overline{a}$			
the ratio of b and a All ratios are fraction, but not all fractions are ratios. Only rates can have decimals. Each have different rules.	b to a, b: a, $\frac{b}{a}$, b ÷ a			
the sum of two consecutive numbers	x + (x + 1)			
the sum of two consecutive even numbers	x + (x + 2)			
the sum of two consecutive odd numbers	x + (x + 2)			
the sum of two consecutive square numbers	$x^2 + (x + 1)^2$			
the sum of two consecutive cubic numbers	$x^3 + (x + 1)^3$			
the sum of three consecutive numbers	x + (x + 1) + (x + 2)			
the sum of three consecutive even/odd numbers	x + (x + 2) + (x + 4)			
the sum of two consecutive multiples of r	$\mathbf{x} + (\mathbf{x} + \mathbf{r}) + (\mathbf{x} + 2\mathbf{r})$			
three is less than five or a is less than b	3 < 5 <mark>or</mark> a < b			
a half is equal to five tenths	$\frac{1}{2} = 0.5$			
twelve is more than six <i>or</i> m is greater than n	$12 > 6 \frac{or}{or} m > n$			
fifteen is not equal to twenty-five	15 ≠ 25			
a number is not less than thirteen	$x \neq 13 \text{ or } x \ge 13$			
a number is not greater than forty	$x \ge 40 \frac{or}{or} x \le 40$			
A number is not greater than or equal to fifteen.	x ≥ 15 <mark>or</mark> x < 15			
The sum of a number and twenty is forty-five.	x + 20 = 45			
Six is three more than a number.	6 = x + 3			

Page. 11 of 16

01 English Terms-Algebra Terms

A. B. Cron©2019-2032 Free Use

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.				
English Phrases	Algebraic Expression			
The product of five and a number is forty-eight.	5x = 48			
Five times a number subtract ten equals six more than three	5x - 10 = 3x + 6			
Six more than four times a number coincides with twenty-	4x + 6 = 23x			
three times a number.	$\neg A + 0 = 25A$			
Three times a number plus five is not less than or equal to	3x + 5 ≰ 66 <mark>or</mark>			
sixty-six.	3x + 5 > 66			
The difference between five times a number and sixteen is	$5x - 16 \ge \frac{x}{2} + 12 \frac{0}{0}$			
not greater than or equal to the sum of a number divided by	$\frac{3}{5}$ 1($\frac{x}{10}$ + 12)			
three and twelve.	$5x - 10 < \frac{1}{3} + 12$			
Some percent (r%) of the whole equals the part.	$\frac{r}{100} = \frac{part}{whole}$			
	100 whole			
Percent Increase : % increase = Increase ÷ <i>Original Number</i> × 100	(404- 160)÷ 160 *100=152.5%			
Percent Decrease : % decrease = Decrease ÷ <i>Original Number</i> × 100	(688 -172)÷ 688 *100=75%			
Simple Interest (I = Prt): Interest = Principal • rate • time	$I = 1200 \cdot 6\% \cdot 3 (= 216)$			
The quantity of 5 more than a number multiplied by another number.	(x + 5)y			

Interactive Websites using this concepts: https://mathsbot.com/activities/wordedExpressions

See Lesson on Percent Increase/Decrease for more details. Kaplan, p. 274f or Refer to 00 GED® Formulas Explained for more details on some of these concepts.

il/ detrvities/ wordedLxpressio	0115	
1) A number minus 2 all multiplied by 7.	a)	f + 2
2) A number subtracted from another number.	b)	7(v - 2)
3) 2 added to a number.	c)	p² + v²
4) The sum of two square numbers.	d)	6u²
5) 8 times by a number.	e)	bq
6) A number multiplied by another number.	f)	d - h
7) The sum of two square numbers.	g)	8f
 A number squared then times by 6 	b)	$v^2 + u^2$

This lesson discusses finding the above Percent problems

including some of the following points: a) finding the original number knowing the percentage decrease/increase and the new value, b) finding the increased/decreased value knowing the original number and the percentage.

Examples: For each of the following statements, use a letter to represent the number: Isla is thinking of and write the statement using letters and numbers.

- a) 'I am thinking of a number, and I add three.'
- b) 'I am thinking of a number, and I multiply by two and add three.'
- c) 'I am thinking of a number, and I add three and multiply by two.'
- d) 'I am thinking of a number, and I multiply by three and add two.'

e) 'I am thinking of a number, and I divide by five and subtract one.'

f) 'I am thinking of a number, and I add two and multiply by three.'

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

In Algebra, students should:

Use and interpret algebraic notation, including:

- ab in place of a × b or a(b)
- 3y in place of y + y + y and $3 \times y$
- a^2 in place of $a \times a$, a^3 in place of $a \times a \times a$; a^2b in place of $a \times a \times b$
- $\frac{a}{b}$ in place of $a \div b$ (Avoid writing a/b or <u>b/a</u>, they can be misleading, if not clearly written some have read slashes as a 1.)
- coefficients written as fractions rather than as decimals
- parenthesis (), [], or {} are all the same at the HSE level
- ab + ac in place of a(b + c), unless factoring

From <<u>https://colleenyoung.org/2022/01/30/algebraic-notation/</u>>

i

Number line addition/subtraction examples.

 $1 - 4 \equiv 1 + (-4)$ result is -3. Begin at +1; move 4 in a negative direction (left).

-5 + 4 = -1 Begin at 4; move 5 in negative direction. Begin at -5; move 4 in the positive direction (right).

-2 + (-3) = -5 Begin at -2; move 3 in negative direction (left).

$$-2 + -3 = -5$$

 -6 -5 -4 -3 -2 -1 0

Definitions needed for next page activity:

Every number has a minimum of two factors. Those with only two factors, the number and one are called **prime numbers**. If a number has three or more factors, it is called a **composite number**. The better you are at this skill, the better your overall math ability will be. Learning your factors will simplify solving all math problems.

29: {1, 29}, this is a prime number. The only prime factorization of 29 is 29, by itself.

30: {(1,30),(2,15),(3,10),(5,6)} or more commonly written: {1,2,3,5,6,10,15,30}, composite. The factor pairs The factor set

The only prime factorization of 30 is $2 \times 3 \times 5$.

32: {1,2,4,8,16,32}, prime factorization is 2⁵. Factor pairs: {(1, 32), (2, 16), (4, 8)}

159: $\{1, 3, 53, 159\}$, 1+5+9=15 Does 15 divide by 3? Yes. The unique prime factorization is 3×53 .

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

Completing this chart **will help to be a better math student; find the factors any number.** There are two classes of factor sets: **Prime** and **Composite**. There is only **one Prime Factorization Set** for any number.

Numbers	Multiples	Prime Factorization	Factor Sets List of Factor	Total Factors	Factor Pairs Helps with factoring quadratics	Classification	
1	1,2,3,	none	{1}	1	None	Special	
2	2,4,6,	2	{1, 2}	2	{(1•2)}	Prime	
3	3,6,9,	3	{1, 3}	2	{(1•3)}	Prime	
4	4,8,12,	2 ²	{1, 2, 4}	3	{(1•4), (2•2)}	Composite	
5	5,10,15,	5	{1, 5}	2	{(1•5)}	Prime	
6		2×3	{1, 2, 3, 6}	4	{(1•6), (2•3)}	Composite	
7		7	{1, 7}	2	{(1•7)}		
8		2 ³	$\{1, 2, 4, 8\}$				
9		3 ²					
10		2×5					
11						Prime	
12					{(1•12), (2•6), (3•4)}		
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32				1			
 a) What number is a factor of every number? b) Which numbers have exactly two factors? c) Write a general description of b)'s factors. d) Which numbers have more than two factors? 							

e) What are these numbers called?

Page. 14 of 16

01 English Terms-Algebra Terms

A. B. Cron©2019-2032 Free Use

Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems.

One (1) is a factor of every **number** and/or **variable/expression**. x has as its factors $\{1, x\}$, this is an **important concept** in mathematical reasoning.

Prime numbers have exactly two factors.

There is only **one prime factorization** of any specific value.

A single variable has a coefficient of 1: $x = 1 \cdot x$.

Note: When you have an expression in parenthesis: $(3x + 5y) = 1 \cdot (3x + 5y)$

And if there is a negative sign, it means: $-x = -1 \cdot x$; $-(3x + 5y) = -1 \cdot (3x + 5y)$ On all values having a negative sign, -1 is a factor, and 1 is a factor.

Number	Prime Factorisation	Factors	Total Factors	Common Factors between factor sets are
1		{1}	1	easy to see using their factor sets. The
2	2	$\{1, 2\}$	2	Greatest Common Factor, GCF, is the
3	3	$\{1,3\}$	2	largest of the common factors in a set.
4	2^{2}	$\{1, 2, 4\}$	3	Example 1:
5	5	$\{1,5\}$	2	$12: \{1, 2, 3, 4, \frac{6}{2}, 12\}$
6	$2{ imes}3$	$\{1, 2, 3, 6\}$	4	$18: \{1, 2, 3, 6, 9, 18\}$
7	7	$\{1,7\}$	2	GCF(12, 18) = 6
8	2^3	$\{1, 2, 4, 8\}$	4	Example 2:
9	3^2	$\{1, 3, 9\}$	3	$14: \{1, 2, 7, 14\}$
10	$2{ imes}5$	$\{1, 2, 5, 10\}$	4	$15 \cdot \{1, 3, 5, 15\}$
11	11	$\{1, 11\}$	2	GCF(14, 15) = 1
12	$2^2{ imes}3$	$\{1, 2, 3, 4, 6, 12\}$	6	
13	13	$\{1, 13\}$	2	The Lowest Common Multiple LCM can
14	$2{ imes}7$	$\{1, 2, 7, 14\}$	4	be found using the prime factors of a
1 <mark>5</mark>	$3{ imes}5$	$\{1, 3, 5, 15\}$	4	anywhen
16	2^{4}	$\{1, 2, 4, 8, 16\}$	5	Framela 1.
17	17	$\{1, 17\}$	2	
18	$2{ imes}3^2$	$\{1,2,3,6,9,18\}$	6	$\begin{bmatrix} 12: 2 \times 2 \times 3 \\ 10 & 2 & 2 \end{bmatrix}$
19	19	$\{1, 19\}$	2	$\frac{18}{2 \times 3 \times 3}$
20	$2^2 imes 5$	$\{1, 2, 4, 5, 10, 20\}$	6	LCM: $2 \times 2 \times 3 \times 3 = 36$
21	$3{ imes}7$	$\{1, 3, 7, 21\}$	4	$\begin{array}{c} GCF: 2 \times 3 \\ \end{array}$
22	$2{ imes}11$	$\{1, 2, 11, 22\}$	4	Example 2:
23	23	$\{1, 23\}$	2	$] 14: 2 \times 7$
24	$2^3 imes 3$	$\{1, 2, 3, 4, 6, 8, 12, 24\}$	8	$15: 3 \times 5$.
25	5^{2}	$\{1, 5, 25\}$	3	$ LCM: 2 \times 3 \times 5 \times 7 $

https://mathsbot.com/printables/factors

GCF: 1 when no common prime factors

Numbers that have exactly two factors are called **Prime Numbers**. Numbers that have more than two factors are called **Composite Numbers**.

Factor sets are frequently compared to assisting in finding the **Greatest Common Factor**, **GCF**, of two or more numbers. The GCF is used to determine which factors can be divided out of fractions.

Prime factorizations are frequently used to assist in finding the **Lowest Common Denominator** (**Multiple**), **LCD** (**LCM**), of two or more numbers to make fraction operations simpler to complete.

You will need to learn to factor expressions like this: 5x - 3x factors as (5 - 3)x or 2x.

Or:
$$\frac{3}{4}x + \frac{2}{3}x$$
 factors as $\left(\frac{3}{4} + \frac{2}{3}\right)x = \frac{17}{12}x$. There are other kinds of factoring as well; why you need know factors.

Translating English into Algebra Key words, signal words, and phrases used on HSE math exams include similar vocabulary in their word problems. Use this page for making your own operator words, this may help you recalling the vocabulary.

