Homework: Linear Transformations from Geometry, Part II

Linh Tran

March 15, 2017

Similarly to Part I of this homework, we are finding a single matrix that combines two transformations (in a particular order). First, it is to reflect the vector over the line $y=3 x$; then, it is to reflect the resulting vector over the x -axis.

For the first reflection, we can use the general form of a reflection matrix (to reflect a vector over a line of slope m) from Part I:

$$
M_{r e f}=\frac{1}{1+m^{2}}\left(\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right) \quad \text { (derived in Part I) }
$$

For the second reflection, we can make one simple modification to the identity matrix:

$$
M_{r e f-x}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

This inverts the y component of the vector, thus reflecting over the x -axis.

So, the combined transformation matrix will be:

$$
\begin{aligned}
& M_{\text {combined }}=M_{\text {ref-x }} M_{\text {ref }} \\
& M_{\text {combined }}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{1+m^{2}}\left(\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right) \\
& M_{\text {combined }}=\frac{1}{1+m^{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right) \\
& M_{\text {combined }}=\frac{1}{1+m^{2}}\left(\begin{array}{cc}
1-m^{2} & 2 m \\
-2 m & 1-m^{2}
\end{array}\right)
\end{aligned}
$$

Where, in this case, $m=3$.

