Task A-0: Angle at Centre and Angle at Circumference

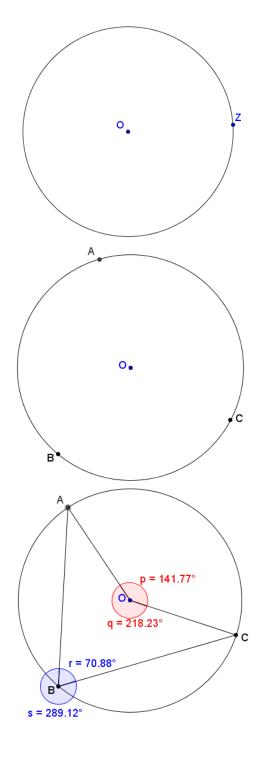
Step 1

Create a circle.

Rename the centre as O and the point on the circumference as Z.

Hide point Z.

Step 2


Create points A, B and C on the circumference.

Step 3

Refer to the figure, draw the line segments and create $\angle AOC$, $\angle ABC$ and their reflex angles.

Rename the angles as p, q, r and s as in the figure.

Set the colour of the angles at centre as red and the angles at circumference as blue.

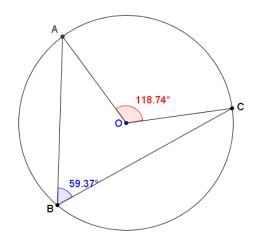
Step 4

We want to show the pair p and r if r < s, otherwise show the pair q and s.

Right click on r, select object properties and choose the "Advanced" panel. In the field "Condition to Show Object", type "r<s", do the same for the angle p

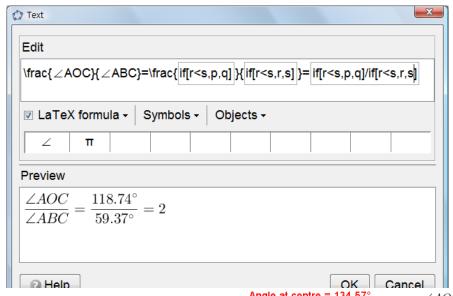
Right click on s, select object properties and choose the "Advanced" panel. In the field "Condition to Show Object", type "s<r", do the same for the angle q

Step 5


Insert text $\triangle ABC$ to show the sizes of $\triangle ABC$ and $\triangle AOC$.

The size of $\angle ABC$ is r if r < s, otherwise it is s. This can be written as if [r < s, r, s].

The size of $\angle AOC$ is the corresponding "partner" of r and s. If r < s, it is p, otherwise it is q, i.e. if[r < s, p, q].


Angle at centre = 118.74°

Angle at circumference = 59.37°

Step 6

Insert text |ABC| to show the ratio between $\angle ABC$ and $\angle AOC$. To create a fraction, we use the LaTeX command \mathbf{ABC} \text{frac{numerator}{denominatior}}



Step 7

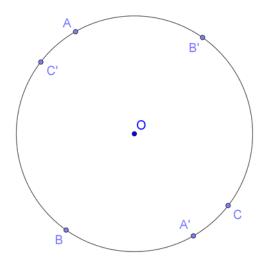
To change the colour of the numerator and denominator, we enclose the numerator by \red{ } and the denominator by \blue{ }.

 $\label{eq:linear_line$

Angle at centre = 134.57° $\angle AOC$ Angle at circumference = 67.28° $\angle ABC$ = $\frac{134.57^{\circ}}{67.28^{\circ}}$ = 2

~ End of Task A-0 ~

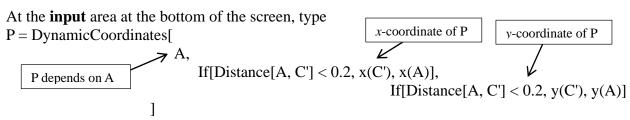
Task A: Angle at Centre and Angle at Circumference


Step 1

Create a circle.

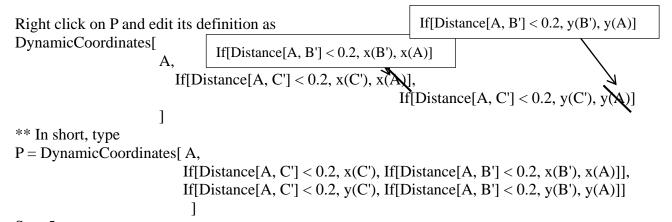
Rename the centre as O and the point on the circumference as Z. Hide point Z.

Step 2


Create points A, B and C on the circumference.

Step 3

To create a point P that act as a "phantom" of A and snap to the point F, we use the command "DynamicCoordinates".


The format of the command is **DynamicCoordinates**[<**Point A>, <Number X>, <Number Y>**] When the new point moves, A moves with it and the coordinates of the new point are (X, Y) and usually X and Y depends on the coordinates of A.

Step 4

To create a point P that act as a phantom of A and snap to **points B' and C'**, we replace the x(A) and y(A) in the original definition of P by

If[Distance[A, B'] < 0.2, x(B'), x(A)] and If[Distance[A, B'] < 0.2, y(B'), y(A)] respectively.

Step 5

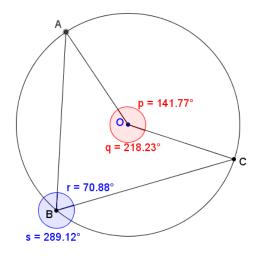
Create a point Q that act as a phantom of C and snap to points B'.

At the **input** area, type

Q = DynamicCoordinates[C, If[Distance[C, B'] < 0.2, x(B'), x(C)], If[Distance[C, B'] < 0.2, y(B'), y(C)]

Step 6

Hide points A, A', B', C and C'.


Rename P as A and Q as C.

Change the color of A, B, and C to black.

Step 7

Refer to the figure, draw the line segments and create $\angle AOC$, $\angle ABC$ and their reflex angles.

Rename the angles as p, q, r and s as in the figure. Set the colour of the angles at centre as red and the angles at circumference as blue.

Step 8

We want to show the pair p and r if r < s, otherwise show the pair q and s.

Right click on r, select object properties and choose the "Advanced" panel. In the field "Condition to Show Object", type "r<s", do the same for the angle p

Right click on s, select object properties and choose the "Advanced" panel. In the field "Condition to Show Object", type "s<r", do the same for the angle q

Step 9

Insert text |ABC| to show the sizes of $\angle ABC$ and $\angle AOC$.

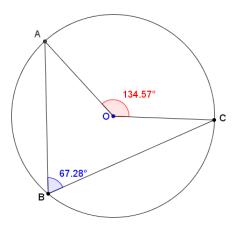
The size of $\angle ABC$ is r if r < s, otherwise it is s. This can be written as if[r < s, r, s].

The size of $\angle AOC$ is the corresponding "partner" of r and s. If r < s, it is p, otherwise it is q, i.e. if [r < s, p, q].

Step 10

Insert text ABC to show the ratio between ∠ABC and ∠AOC. To create a fraction, we use the LaTeX command \frac{numerator}{denominatior}

}


 $\label{eq:linear_action} $$ \frac{\Delta AC}{\Delta BC}=\frac{[if[r< s, p, q]]}{[if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]]} = \frac{[if[r< s, p, q]/if[r< s, r, s]]}{[if[r< s, p, q]/if[r< s, r, s]}}$

Step 11

To change the colour of the numerator and denominator, we enclose the numerator by $\ensuremath{\mbox{\sc red}}$ and the denominator by $\ensuremath{\mbox{\sc blue}}$.

$$\label{eq:frac} $$ \left\{ red\left\{ if[r < s, p, q] \right\} \right\} \left\{ \left\{ if[r < s, r, s] \right\} \right\} $$$$

Angle at centre = 134.57° $\frac{\angle AOC}{\angle ABC} = \frac{134.57^{\circ}}{67.28^{\circ}} = 2$ Angle at circumference = 67.28°

~ End of Task A ~

Task A-1: Angle at Centre and Angle NOT at Circumference

Step 1

Repeat Step 1 of Task A.

Step 2

Create a free point D on the plane. Then, create a line passing through the centre O and D. Mark one of the points of intersection of the line and the circle as E.

Hide the points D, E and the line.

Step 3

Create a point B with the dynamic coordinates depending on point D, while snapping to point E. (Exercise)

Step 4

Follow the rest of steps in Task A to complete the dynamic worksheet to show one constraint of the theorem by the counter-examples.

~ End of Task A-1 ~

Task A-2: Angle at Centre and Angle at Circumference of an ELLIPSE

Step 1

Create an ellipse. Label the mid-point of the foci as O.

Repeat all the other steps in Task A.

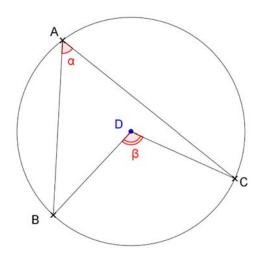
~ End of Task A-2 ~

Task A-3: Angle at Centre and Angle at "Circumference" of a SQUARE

Step 1

Create a square by using the "Regular Polygon" tool. Label the centre of the square as O.

Step 2


Create Sq as a list of item holding the four segments of the square using the bracket "{}". Define points A, B, C as "point[Sq]".

Repeat all the other steps in Task A.

~ End of Task A-3 ~

Think about it:

Student QQ claims that if $\beta=2\alpha$, D must be the centre of the circle. Do you agree? Explain your answer.

