
PHYS 419: Classical Mechanics Lecture Notes

QUADRATIC AIR RESISTANCE

We will consider motion of a body in air. We will assume that the air resistance can be

approximated by the quadratic term only: Fdrag = −cv2v̂. The motion takes place in Earth

gravitational field. We will consider three cases: (i) horizonal motion, (ii) vertical motion,

and (iii) general motion.

I. HORIZONTAL MOTION

The Newton equation is

mẍ = −cv2
x

or

mv̇ = −cv2

where we omit the subscript x for now. This differential equation has a very simple solution

∫
dv

v2
= − c

m

∫
dt

The integration results in

−1

v
= − c

m
t + C

where C is a constant. If v(0) = v0, C = −1/v0 and we have

−1

v
= − c

m
t− 1

v0

or
1

v
=

1

v0

(cv0

m
t + 1

)
.

Denoting m/cv0 = τ , we get

v(t) =
v0

1 + t/τ

To get x(t), integrate one more time

∫
dv = v0

∫
1

1 + t/τ
dt + C

so that

x(t) = v0τ ln(1 + t/τ) + C.
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If x(0) = 0, C = 0 and we get

x(t) = v0τ ln(1 + t/τ).

This solution has one unexpected feature: since ln is an always increasing function, despite

air resistance the object does not have a maximum range, opposite to what we have seen

for linear drag. This is an artifact of our restriction to quadratic term only. Although this

approximation may work well in some range of velocities, when the velocity becomes very

small, the linear component of the air resistance cannot be neglected.

II. VERTICAL MOTION

Let’s drop subscript y in vy, assume v(0) = 0 and y0 = 0, and orient the ŷ axis downwards.

The Newton equation is

mg − cv2 = mv̇

We can immediately read from this equation the terminal velocity since when this velocity

is reached, v̇ = 0 and therefore

vterm =
√

mg/c.

To solve Newton’s equation we write it as

dv

1− c
mg

v2
= gdt,

use the definition of vterm, and integrate

∫
dv

1− v2/v2
term

= g

∫
dt.

We make a substitution v/vterm = z, dz = dv/vterm to get

vterm

∫
dz

1− z2
= gt + C.

The integral is elementary ∫
dz

1− z2
= arctanh(z)

(arctanh is the inverse function of tanh defined as tanh = (ez− e−z)/(ez +e−z)). Going back

to our original variables, we get

arctanh
v

vterm

=
gt

vterm

+ C
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or

v(t) = vterm tanh
gt

vterm

+ C ′.

Since tanh(0) = 0, our initial condition gives C ′ = 0 and the solution becomes

v(t) = vterm tanh
gt

vterm

.

To get y(t), integrate one more time

y(t) =

∫
dv = vterm

∫
tanh

gt

vterm

dt.

The integral is ∫
tanh(x)dx = ln(cosh(x)) + C

where cosh(x) = (ez +e−z)/2 (the derivation of this formula as well as of some other relations

for the hyperbolic functions is the subject of one of the problems, Taylor 2.34, in Assignment

3) so that we get

y(t) =
v2

term

g
ln

(
cosh

(
gt

vterm

))
+ C.

Since cosh(0) = 1 and ln(1) = 0, our initial condition gives C = 0 and the final result is

y(t) =
v2

term

g
ln

(
cosh

(
gt

vterm

))
.

III. GENERAL (TWO-DIMENSIONAL) MOTION

For a motion involving both components, the Newton’s equation is

mr̈ = mgŷ − cv2v̂ = mgŷ − cv(vxx̂ + vyŷ).

We can write this vector equation in component form

mẍ = −cvvx = −c
√

v2
x + v2

y vx

mÿ = mg − c
√

v2
x + v2

y vy

but the two equations are coupled by v. No analytic solution is therefore possible, but the

equations can be solved numerically.
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