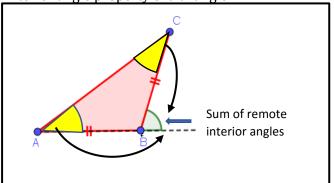
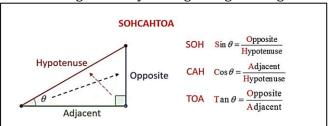
Investigate Double Angle Identities (Sine and Cosine)

Pre-Required Knowledge:

• Exterior angle property of a triangle.



• Basics of Trigonometry in a right-angle triangle.

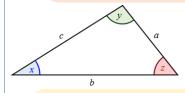


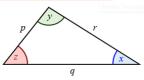
- Pythagoras theorem
- Similarity of triangles.

Similar Triangles

- Same shape, but not necessarily the same size.
- Corresponding angles are equal.
- Corresponding sides are in the same ratio.

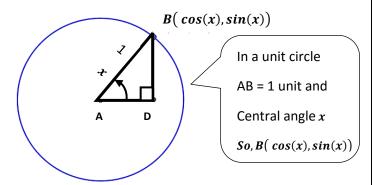
$$\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$$





To test for similar triangles:

- AA If 2 corresponding angles are equal.
- SSS If 3 corresponding sides are in the same ratio.
- SAS Ratio of 2 pairs of corresponding sides are equal and their included angles are equal.
- Conversion of coordinates into sine and cosine with given angle using unit circle.



Objectives:

Big Idea:

Learners will investigate the sine and cosine double angle relationships and derive three or four identities.

During the Activity:

Learners will

Apply exterior angle property to see the relationship between α and β . Student's discovery:

$$\alpha = 2 \beta$$

Apply SOHCOHTOA to convert sides in terms of α and β .

Student's discovery:

from ΔDEF ,

$$DF = \sin(\alpha),$$

$$EF = \cos(\alpha)$$

from ΔCGE

$$\begin{array}{l}
CG = \cos(\beta) \\
GE = \sin(\beta)
\end{array}$$

Apply Pythagoras theorem in one triangle then in the other (big) to come up with one identity of $\cos(2\beta)$ Student's discovery:

from ΔDCF ,

$$DC^2 = DF^2 + CF^2$$
where:

$$DC = 2CG = 2\cos(\beta) \& CF = 1 + \cos(\alpha)$$

Simplify to get

$$\cos(\alpha = 2\beta) = 2\cos^2(\beta) - 1$$

Apply similarity of triangles and use previous results to derive $\sin(2\beta)$ identity.

Student's discovery:

 $\Delta DCF \sim \Delta ECG$, which means

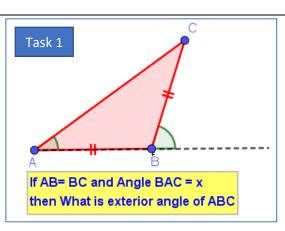
$$\frac{DC}{EC} = \frac{DF}{EG}$$

Simplify to get

$$sin(\alpha = 2\beta) = 2cos(\beta) sin\beta$$

$$\cos(\alpha = 2\beta) = 1 - 2\sin^2(\beta)$$

Or Generalize to
$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

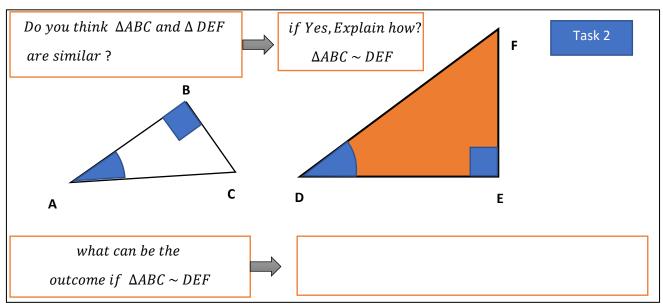


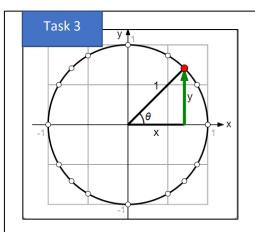
Starter for the Day:

Any relationship between angles BAC and BCA?

Is it always true for all triangles?

In this special case AB= BC what is the relationship between exterior angle of ABC and angle BAC?





Is there any relationship between x, y and 1

Can you write x and y in terms of θ

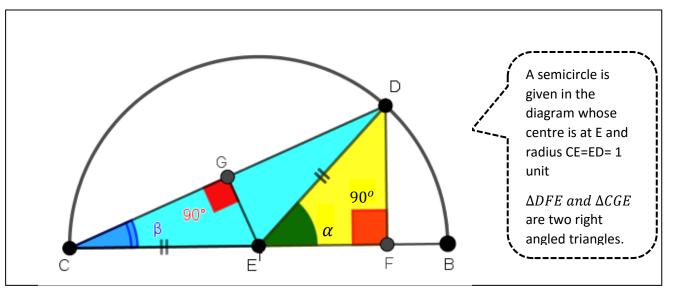
x =

y =

Your Notes or Any Question:

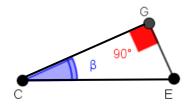
Investigation:

Geogebra online link for the Activity: Online Investigation



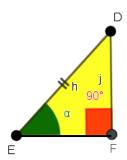
Task 1 Apply exterior angle property in ΔCED to work out the relationship between α and β Your Outcome:

Task 2 a) Apply SOHCAHTOA in $\Delta \textit{CGE}$ to work out the lengths of CG and CE in terms of β



Your Outcome: CE= CG=

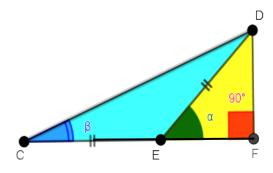
b): Apply SOHCAHTOA in ΔDEF to work outh the lengths of DF and EF in terms of α



Your Outcome: DF= EF=

Task 3

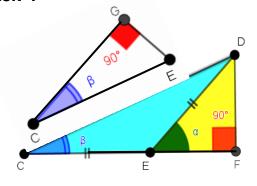
Apply Pythagoras theorem in $\triangle CDF$ to investigate the relationship between $\cos(\alpha)$ and $\cos(\beta)$



Your Outcome:

$$cos(\alpha = 2\beta) =$$

Task 4



Apply similarity in ΔDCF and ΔECG to investigate the relationship between $\sin(\alpha)$ and $\cos(\beta)$

Your Outcome:

 $\sin(\alpha = 2\beta) =$

As you know $\alpha = 2(\beta)$, if you consider $\beta = x$ then $\alpha = 2x$ a) using the results of task 4 rewrite the relationship in terms of x

$$\sin(2x) =$$

b) using the results of task 3 rewrite the relationship in terms of x

$$cos(2x) =$$
 $----(in terms of cosine)$

$$cos(2x) = ----- (in terms of sine)$$

$$cos(2x) = --(in terms of cosine and sine)$$

Task 6:

Verify above four identites with $x = 30^{\circ}$ or $\frac{\pi}{6}$

Open ended	Structured
Extension: Task 7 — $tan(x) = \frac{\sin(x)}{\cos(x)}$	

Open ended	Structured
Establish a relationship between $tan(lpha)$ and $tan(eta)$	$if tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$ 1. Use task 3 and 4 to rewrite $\sin(\alpha) and \cos(\alpha) in \ terms \ of \ \beta$ $tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$
	2. convert everything in terms of $tan(\beta)$

Can you rewrite first and last identity (task 5) in terms of tan(x),

$$\sin(2x) = 2\sin(x)\cos(x) = \frac{2\sin(x)\cos(x)}{1} = \frac{2\sin(x)\cos(x)}{\sin^2 x + \cos^2 x} = \frac{2\sin(x)\cos(x)}{\sin^2 x + \cos^2 x/\cos^2 x}$$

$$\sin(2x) =$$

$$\cos(2x) = \cos^2 x - \sin^2 x = \frac{\cos^2 x - \sin^2 x}{1} =$$

$$cos(2x) =$$