
Lanching from ground level 

 

 

 

We use notations: 

( )0,0O   – launching point, ground level 

( ), 0B R   – arriving point, ground level 

R   – range (horizontally) 

T   – time 

H   – maximum height 

,
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  – vertex of parabola (turning point) 

, 0
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  – projection of V  on x-axis 
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0y yv v gt= − . In point V : 0, 0
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In point A : , , 0
2 2
R Tx t θ= = = . In point B : 0y =   

Horizontal movement: 0xx v t=  (uniform movement, constant velocity) 

Vertical movement: 
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0 2y
gty v t= −  (uniformly varying movement, constant acceleration) 

Case I: We know angle θ  and range R  

• Finding T 

Removing t from the two movement equation:
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In points O  and B , there is 0y =  so 1 20,x x R= =  are roots of parabola equation. 

But then, 
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• Finding H 

In vertex V: 
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From (1) ( )tg 2
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• Finding 0v   

We have 0 0 cosxv v θ= . On the other hand 0x
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= . From last two we get 0 cos
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= .  

From (1) we get 
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So, when we know angle θ  and range R  we can find 0, ,T H v  from formulas ( ) ( ) ( )1 , 2 , 3 . 

 

Case II: We know angle θ  and initial velocity 0v  
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