Lanching from ground level

We use notations:

- $O\left(0,0
 ight)$ launching point, ground level
- Big(R,0ig) arriving point, ground level
- R range (horizontally)
- T time
- H maximum height

$$V\left(\frac{R}{2},H\right)$$
 – vertex of parabola (turning point)
 $A\left(\frac{R}{2},0\right)$ – projection of V on x-axis

$$\overrightarrow{v_0} = \overrightarrow{v_{0x}} + \overrightarrow{v_{0y}}, \ v_0^2 = v_{0x}^2 + v_{0y}^2$$

$$v_{0x} = v_0 \cos \theta, \ v_{0y} = v_0 \sin \theta$$

$$v_x = v_{0x}, \ \forall t \in [0,T] \text{ constant} \Rightarrow R = v_{0x}T \Rightarrow v_{0x} = \frac{R}{T}$$

$$v_y = v_{0y} - gt \text{ . In point } V : t = \frac{T}{2}, \ v_y = 0 \Rightarrow v_{0y} = \frac{gT}{2}$$

In point $A: x = \frac{R}{2}, t = \frac{T}{2}, \theta = 0$. In point B: y = 0

Horizontal movement: $x = v_{0x}t$ (uniform movement, constant velocity)

Vertical movement: $y = v_{0y}t - \frac{gt^2}{2}$ (uniformly varying movement, constant acceleration)

Case I: We know angle θ and range R

• Finding T

Removing t from the two movement equation: $t = \frac{x}{v_{0x}}$ we get

$$y = v_{0y} \cdot \frac{x}{v_{0x}} - \frac{g}{2} \cdot \frac{x^2}{v_{0x}^2} = \frac{v_0 \sin \theta}{v_0 \cos \theta} \cdot x - \frac{g}{2} \cdot \frac{T^2}{R^2} \cdot x^2$$
, hence $y = x \operatorname{tg} \theta - \frac{gT^2}{2R^2} \cdot x^2$ (parabola).

In points O and B, there is y = 0 so $x_1 = 0$, $x_2 = R$ are roots of parabola equation.

But then,
$$y = 0 \iff x \operatorname{tg} \theta - \frac{gT^2}{2R^2} x^2 = 0$$
, hence $x_1 = 0$, $x_2 = \frac{2R^2 \operatorname{tg} \theta}{gT^2}$.

From last two expressions of $x_2 \Rightarrow \frac{2R \operatorname{tg} \theta}{gT^2} = 1$ hence $T = \frac{\sqrt{2Rg \operatorname{tg} \theta}}{g}$ (1)

• Finding H

In vertex V: $t = \frac{T}{2}$ și $v_y = 0$, hence $v_{0y} = gt$.

$$y = H$$
 și $t = \frac{T}{2}$, hence $H = v_{0y} \cdot \frac{T}{2} - \frac{g}{2} \cdot \frac{T^2}{4} = g \cdot \frac{T}{2} \cdot \frac{T}{2} - \frac{g}{2} \cdot \frac{T^2}{4} = \frac{gT^2}{8}$

From (1) \Rightarrow $H = \frac{R \operatorname{tg} \theta}{4} (2)$

• Finding v_0

We have $v_{0x} = v_0 \cos \theta$. On the other hand $v_{0x} = \frac{R}{T}$. From last two we get $v_0 = \frac{R}{T \cos \theta}$.

From (1) we get
$$T = \frac{\sqrt{2Rg \operatorname{tg} \theta}}{g}$$
 and replacing we get $v_0 = \frac{R}{\frac{\sqrt{2Rg \operatorname{tg} \theta}}{g} \cdot \cos \theta} = \frac{\sqrt{Rg}}{\sqrt{2\frac{\sin \theta}{\cos \theta}} \cdot \cos^2 \theta}$,
hence $v_0 = \sqrt{\frac{Rg}{\sin 2\theta}}$, or $v_0 = \frac{\sqrt{Rg \sin 2\theta}}{\sin 2\theta}$ or $v_0^2 = \frac{Rg}{\sin 2\theta}$ (3).

So, when we know angle θ and range R we can find T, H, v_0 from formulas (1), (2), (3).

Case II: We know angle θ and initial velocity v_0

From
$$v_0^2 = \frac{Rg}{\sin 2\theta} (3)$$
 we get $R = \frac{v_0^2 \sin 2\theta}{g} (4)$

From $H = \frac{R \operatorname{tg} \theta}{4} (2)$ we get $H = \frac{v_0^2 \sin^2 \theta}{g} (5)$

From
$$T = \frac{\sqrt{2Rg \operatorname{tg} \theta}}{g}$$
 (1) we get $T = \frac{\sqrt{2 \cdot \frac{v_0^2 \sin 2\theta}{g} \cdot g \operatorname{tg} \theta}}{g} \Rightarrow T = \frac{2v_0 \sin \theta}{g}$ (6)