
WORK-ENERGY PART II

A collection of facts about conservative forces and potentials, from several references.

Conservative force

Work done by a conservative force  

 is independent of the path of the object acted on by the force; 
 depends only on the start and end points of the motion of the object; 
 will be zero if the start and end points are the same (closed path);
 is reversible;
 can be expressed as the difference between the initial and final values of a potential energy function.

If there is no change in the kinetic energy (KE) as a particle moves through a closed path then the force acting on it is
conservative.  Inversely,  if  there is  a change in KE then at  least  one force  acting must be nonconservative.  A force  is
conservative if the work done by the force on a particle that moves between two points depends only on those points and not
on the path followed. If the work depends on the path then the force acting is nonconservative.

The condition that the net work done by a force on an object over a closed path is zero defines a conservative force under all
circumstances. A conservative force always acts to “push” a system toward lower potential energy.

A conservative force must do both positive and negative work along a closed path. By contrast, since the work done by
friction is  always negative (the friction force is always in direction opposite that of the motion), friction’s work does not
change  sign  and  thus  cannot  sum to  zero  around  a  closed  path.  A nonconservative  force,  such  as  friction,  cannot  be
represented by a potential energy function. A friction force depends on the direction of the object’s velocity and thus is not
conservative. 

Any  one-dimensional  force  that  depends  only  on  position  is  conservative.  Any constant  force  is  conservative.  In  one
dimension, if the impressed force F is a function of position only, it is said to be conservative, and then the sum of the kinetic
and potential energies is constant. Constraint forces act at right angles to the motion and so do no work and thus do not
contribute to potential energy. 

If a force is conservative then a potential (energy) function can be found for it.

Potential energy

“All phenomena depend on the variations of energy and not on its absolute value”  ... Maxwell

The potential  function was introduced  as an auxiliary mathematical  quantity,  useful  in finding a force.  The concept  of
potential and the formal theories for dealing with it were developed for application to problems in gravitational attraction.
Potentials  are  associated  with conservative  forces  only.  The work done by a conservative force  is  equal  to  the loss  in
potential energy of the object upon which the force acts.

Potential times a multiplicative constant is the potential energy (PE) of the system. The PE of a system represents a form of
stored energy that can be fully recovered and “converted” into the energy of motion, kinetic energy. The zero level of PE is
arbitrary,  and  only  changes in  PE  have  any  physical  meaning.  .  The  PE  may  be  regarded  as  the  stored  ability  of  a
conservative force to do work in order to return an object from its current position back to the position of zero PE.

The work done by conservative vector forces can be re-expressed in terms of a simple scalar function of position called the
potential. This can greatly simplify the analysis of 3D systems, since the scalar potential is easier to work with than the
vector force. In 1D the advantage is not so clear.
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This scalar potential is especially useful for systems with many forces or objects, such that the total potential is just a scalar
sum, rather than a more complicated vector resultant. For example, the gravitational force “field” defined by several masses
is more easily described by a potential sum, and then the force at a point is found from the gradient of this potential (as
opposed to doing all the vector resultants for the several masses). Potentials are used to provide a convenient means for
calculating the force on an object, but in some problems it may be easier to find the force directly, rather than by finding a
potential and then taking its gradient (derivative, in 1D). 

If the net work done by a force on an object is zero over any path that starts and ends at the same place, then a potential
(energy) function can be defined for that force. That is, the only way to assign a unique value to the potential energy is if the
work integral around a closed path vanishes. If this is the case then the work done along a path from A to B would be
independent of the specific path taken, and then would equal the potential energy lost, which also equals the kinetic energy
gained. Thus the total mechanical energy is constant.

Potential energy is a property of a system, not an object by itself. PE is energy associated with the configuration of a system
in which a conservative force acts. In some cases “configuration” refers to the relative position of the objects in the system.
The PE is found by calculating the work done in moving a system slowly, without changing the kinetic energy, from the zero
point of the PE to the desired position. Doing positive work requires reducing the PE of the system (like taking money out of
the bank).

The component  of a conservative  force in any direction is equal to the spatial  rate  of decrease  in the potential  in that
direction. The potential energy is a function of position, whose negative derivative gives the force at that position. In more
than one dimension, the scalar derivative of the potential is replaced by the vector gradient of the potential.

 
Basic mathematical relations

In one dimension, say, x, the change in potential energy U as an object moves from xi to xf  under the influence of force F is,
with θ the angle between the force and the displacement,
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and we can define a potential energy function as
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where α is a dummy integration variable. To find the force from the potential energy function we use
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Mathematical details                                                                   (more advanced, optional)

If a force is conservative, then it is the case that
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This is a necessary and sufficient condition for a force F which is a function of position only to be conservative, and for the
existence of the potential V(x,y,z). It can also be shown, by Stokes’s Theorem, that this condition means that the line integral
(i.e., the work integral) from some start point A to some end point B is independent of the path between A and B. Further,
under this condition, if A and B are the same point (a closed path) then the net work around the path from A back to A is
zero. This condition also means that the vector force F can be found from the gradient of the scalar function V, that is
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and  we  can  evaluate  the  work  line  integral  in  a  simple  way  (here  using  the  position  vector  r instead  of  Cartesian
components):
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since the result does not depend on the path between A and B. Note that the work done by F in moving the object from A to
B is equal  to the  decrease in PE; a change in PE is the  negative of  the work done on the object.  Eq(6) is  called the
Fundamental Theorem of Line Integrals, by analogy to the Fundamental Theorem of Calculus.

When a vector  field,  like a  force  defined at  any point  in some region of  space,  meets  condition (4)  and is thus path-
independent, we can define the potential energy of the system consisting of the force and an object influenced by that force.
When that object moves to another position, the potential energy changes by an amount equal to the work done by the force,
and this work depends only on the starting and ending positions.  If  the work done was not path-independent,  then the
potential energy would depend on both the object’s current position and on how it got there, making it impossible to define a
useful potential energy.

Energy diagrams

We can graph the U(x) function from Eq(2), or it may be given separately in a problem. These graphs contain much useful
information about the motion of an object in a conservative field. A separate handout discusses these diagrams, and gives
several examples. There is also a computer simulation that we will use to explore these graphs. Here is some mathematics
useful in the analysis of these diagrams.
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In the last case, the equilibrium will be stable if the first derivative found to be different from zero is of even order and
positive,  otherwise  it  is  unstable.  Only  if  all  higher  derivatives  are  zero  is  the  equilibrium truly  neutral.  These  cases
correspond to a minimum, a maximum, and an inflection point in the graph of U(x), respectively.

Turning points

These points are found by using
( ) totalU x E

and solving for the x position(s). Depending on the form of U(x) this could be a very complicated process, and using the TI
calculator’s  “Intersection” capability can make this much easier.  Of course the calculators can also be used to find the
extrema, and the force at a point.
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