
(5)x2 t( ) v0 1 x0  t x0  exp 1 t 

In this case the mass just returns to the equilibrium position, with no overshoot. The solution is

CASE II   Eigenvalues real, repeated, negative   CRITICAL DAMPING   no oscillation      = 1

(4)x1 t( )
v0 2 x0 
1 2

exp 1 t 
v0 1 x0

1 2
exp 2 t 

The solution in this case follows from Eq(2) when  is smaller than the square of /2. In this case the 
damping "overwhelms" the restoring force and the mass does not oscillate; essentially, it just slows 
down and stops, and may not even return to the equilibrium position in a finite time. The solution can be 
shown to be, using the ICs for displacement x0 and velocity v0  

CASE I    Eigenvalues real, distinct, negative       OVERDAMPED         no oscillation        > 1

(3)


2 


We can have three situations or cases involving these eigenvalues. They can be real and distinct 
(different), and negative; they can be real and repeated and negative; or they can be complex conjugates 
with negative real parts. To begin, we define a useful quantity called the damping ratio
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There are several ways to solve the free response portion; one useful method for our purposes is to 
assume an exponential response. This leads to important quantities called "eigenvalues," which here 
are given by 

UNFORCED RESPONSE

The solution to Eq(1) has two parts: (a) the unforced solution, aka the "free response" of the system to 
the initial conditions (IC), and (b) the response to the forcing function on the RHS. These solutions are 
linearly independent, so that the overall solution is just their sum (superposition).

where  is the damping factor and  is the restoring force proportionality factor (linear restoring force 
with displacement). The damping is NOT FRICTION and, unlike friction, is linearly proportional to the 
velocity.

(1)
d
2
x

dt
2


dx

dt
  x

F

m
cos  t 

and, dividing by the mass we have

m
d
2
x

dt
2

p
dx

dt
 qx F cos  t 

The differential equation for the generic displacement variable x is, from Newton's Second Law, with a 
linear velocity-dependent damping

DYNAMIC RESPONSE FOR DAMPED HARMONIC OSCILLATORS
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Here is a plot showing the three cases. The dotted line is Case III with no damping.

This is one way to write the solution, using a single trig function with a phase angle. The more 
basic solution is the sum of a sine and cosine term, but combining them is more convenient for 
analysis of the system.

x3 t( ) A exp


2
t




cos  t  

(6)

phase angleamplitudeangular frequency
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This is the most interesting case, since we have an exponentially-decreasing sinusoidal oscillation. 
This solution is a bit cumbersome, so we define some useful quantities first:

CASE III  Eigenvalues complex conjugates      UNDERDAMPING         oscillation             < 1

Note the product of time and the exponential; this is bounded since the exponential approaches zero 
faster than the linear increase of time. The two eigenvalues are exactly equal in this case.
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FORCED RESPONSE

We now have the predicted response of the system to its initial conditions. Next we need to develop a 
solution for the situation where the system is "driven" by some input, usually assumed to be a 
sinusoid. Again there are various methods for this; one way is to  assume a solution of the form

xF t( ) aF cos  t  bF sin  t 

where  is the angular frequency of the driving force, as in Eq(1). If we differentiate this twice and use 
those results in Eq(1), it is possible to solve for the coefficients aF and bF . Carrying this out we find

aF

F0  
2

 


2

 2   2




bF

F0   


2

 2   2




(7)

Here F0 is F / m. As we did for the unforced situation, it is again convenient to combine these into a 
single trig function, with an amplitude and phase angle. This results in

AF   
F0
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xF t( ) AF cos  t F  (8)

Note that the phase angle must be in the first or second quadrant (i.e., between 0 and ); thus the extra 
complexity is needed to get the ATAN function to return the correct angle. Below is a plot of the 
amplitude for several values of  for F0 = 1 and  = 2.25; the peak AF shifts to the left as  increases.
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The peak in the amplitude graph is attained when the driving frequency  is the same as the resonant 
frequency of the system, which can be shown by differentiating the equation for AF to be 

R 

2

2
 (9)

This situation is called resonance, and is of great importance in the design of mechanical systems. 
We can see in Eq(9) that, if the damping is large enough, the resonant frequency becomes imaginary, 
and, in other words, there is no resonance. In many mechanical systems this is desirable. 

The maximum amplitude of the response at resonance is

Amax

F0

 


2







2



 for small damping this is approximately Amax

F0

 
 (10)

Note that if there is zero damping the response at resonance is, in theory, infinite.

COMBINED RESPONSE

A simulation program has been developed that implements these calculations, and permits 
examination of the response as the parameters are adjusted. Below is a plot showing the kind of 
information available in the interactive program. The thick line is the overall, total response, while the 
dotted line is the unforced response, and the thin solid line is the forced response. After the initial 
transient the response follows the driving function.   
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