TEOREMA DE JACOBI

Quando somados os elementos de uma fila em outra e mantida a mesma fila intacta, o determinante desta matriz não muda.

Voltemos a matriz M16, some a fila 1 na fila 2 e mantenha a fila 1, logo "M21= $\{\{1,2\},\{5,7\}\}$ " depois insira em forma de texto.

Agora digite "Determinante[M21]" e veja g= (-3), em seguida "Determinante[M16]" e teremos o mesmo valor.

ISBN N° 978-85-8196-091-3

Observação:

A título de um minicurso presencial que serve de apresentação do presente material, relato abaixo a janela de trabalho que utilizo, e que demonstra algumas das possibilidades de uso do GeoGebra, não apresentadas neste material, por ser foco de outro trabalho.

Mas, para os presentes, irei apresentar de forma oral e via Datashow, a janela CAS e a janela Protocolo de construção.

Entada: • Janaia da Algadia	🗵 🕴 užituo simteteo (ura)	🔟 💌 Janca oz viskaização	Allen and A	🔟 🖛 «τοτρούο ας Ορτεστικάς	t Ø
$ \begin{array}{c} \text{Inter} \\ & \mathcal{O} \ \text{If } b = \left(\begin{array}{c} 1 & 2 \\ 4 & 5 \end{array} \right) \\ & \mathcal{O} \ \text{If } b = \left(\begin{array}{c} 1 & 2 \\ 5 & f \end{array} \right) \\ & \text{Kentons} \\ & Kento$	1 Peerson(2.6) 2 = −1 3 Heermon(22) 3 Heermon	$(\begin{array}{c}1&2\\4&5\end{array})\\\begin{pmatrix}1&2\\4&5\end{array})\\\begin{pmatrix}1&2\\5&7\end{array})$	-3 -3	IH+ T+ [2] (≥] (●] (●) N. Spect Destroya Transmitt Destroya Zhannero Destroya Zhannero Destroya Zhannero Destroya Zhannero Sectorya Sectorya Sectorya Zhannero Sectorya Sectorya Sectorya Zhannero Sectorya Sectorya Sectory	Ndar Ecternal (Her (K, Z, (A K))) 2 201 (K, Z, (A K))) 121 (K, Z, Z, (A K)))

Na caixa de entrada, construa em sequência os seguintes comandos: "M={{a,b},{a,-b}}"; "X1={{a,0},{a,0}}"; "X2={{0,b},{0,-b}}".

79

ISBN N° 978-85-8196-091-3

Na janela CAS, digite : x1=Determinante[X1]/Determinante[M];Determinante[X2]/Determinante[M]; S={{x1},{x2}}; e Prova=M*S.

Veja nossa calculadora para solução de Determinantes.

O software solicitará a criação de controles deslizantes, basta aceitar, a final, nos serão uteis.

Este processo será melhor conceituado no próximo capitulo.

ýr GeoGebos Classor 5		г
opro Läha Entri Opçõev Feramentas Janela Apole		Vecé entreu como literario Augusto de Univ
= 🛥 🗸 🔥 (()) 🦄 x- x- 🕈 🖉 🗛 🗉 Nanter Entrada		
EN7002:		÷ 0
r Janola se Ageora 🖂 🔻 Janola de Visualização	K > Cárculo Simpóreo	LAS)
D B + fr+ [L B + C +	xt=Determin	an by X10 Selection and 400
	11-1	
$M = \begin{pmatrix} 1.5 & 0.8 \\ 1.5 & 0.0 \end{pmatrix}$		
- MI = (2.4) (-08	2	un tej kaj de kommunita julij
· · · · · · · · · · · · · · · · · · ·	+ x2 = 0	
\odot XI $\begin{pmatrix} 15 & 0\\ 15 & 0 \end{pmatrix}$	8-(br), b2%	
	2 10-1	(b
$\odot X = (\hat{n} - \hat{n}\hat{n})$	* s = (x2)
Nimen	Prove WPC	
• h=0.8		
	4	$\left(\left(\begin{array}{c} 3 \\ 2 \end{array} \right) \right)$
	· + Prava	á _
		\\ 2 [*] 5 [*] //
	-	
I		

Esta construção em particular, eu visualizei em uma vídeo aula de um professor.

Na janela de álgebra, temos os passos que faríamos no caderno a fim de solucionar um sistema usando matrizes. Na janela CAS, teremos os resultados já na forma matricial. Na janela de entrada, controles deslizantes que nos permitiram explorar este novo objeto que construímos.

ISBN N° 978-85-8196-091-3