LAB–Pythagorean Triples https://www.geogebra.org/m/n38kemvj

Name _____

- 1. In the Geogebra file "Pythagorean Triples", the lengths of the sides of the legs of the right triangle have been constrained so they are always whole numbers.
- 2. Move the points to change the side lengths. Enter the data in the chart.

3. Can you find a set of lengths that have a whole number hypotenuse length? That is called a Pythagorean Triple: a set of three whole numbers that can be sides of a right triangle.

Leg 1 Measure	Leg 2 Measure	Hypotenuse Measure	GCF of sides?	Primitive Triple

4. If there is a Greatest Common Factor of the three sides, enter that in column 4. Divide the sides by the GCF to find the Primitive Triple.

If the GCF is 1 then the original sides make a primitive triple. You can use any scale factor (multiplier) to create a new triple from a primitive triple.

Determine if these are Pythagorean Triples:

- A. 30, 40, 50
- B. 5, 12, 12
- C. 21, 220, 221
- 5. Create a Pythagorean Triple with a primitive triple you found above, multiplied by a scale factor. Confirm with the Pythagorean Theorem.

6. You can generate a Pythagorean Triple using two numbers **m** and **n**, with m > n. Then a = $m^2 - n^2$, b = $2 \cdot m \cdot n$, and c = $m^2 + n^2$ [This is known as Euclid's Formula]

Enter some values for \mathbf{m} and \mathbf{n} , and record the triples below. Test your triples on the triangle at the top of the GeoGebra page.

m	n	а	b	С	Triple

7. [Extension] There are some interesting patterns in the numbers that make up Pythagorean Triples.What do you notice about the numbers in the primitive triples you found?