S4 - MATHEMATICS (M2) - CHAPTER 3 Limit and the number e WORKSHEET 01

Name: \qquad Class: \qquad [No.: \qquad Date: \qquad

Learning Objective

1 Idea of limits

- To understand the concept of the limit of a function.
- To learn finding the limit of a function by using the graph of the function.
- To recognize the definitions of intervals and absolute values.
- To understand the concept of continuous and discontinuous functions.

2 Limit of functions at a certain value

- To learn finding the limit at a certain value of a rational function and a function involving surds.
- To learn various theorems on limits of sum, difference, product, quotient, scalar multiple, composite functions and use them to find the limit.

1. Idea of limits

Consider the function $f(x)=\frac{x^{3}-8}{x-2} . f(x)$ is clearly undefined when $x=2$.
We want to observe the behavior of $f(x)$ when \boldsymbol{x} is close to 2 .

Task 1. Completing the following table. Give your answers corrected to 4 decimal places.

x	1	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1	3
$f(x)$											

From the above result, when x moves closer and closer to \qquad 2 , $f(x)$ gets closer and closer to \qquad .
We say "the limit of $f(x)$ is 12 when x tends to 2 " and denote as $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=12$.

For a function $f(x)$, if the function value $f(x)$ gets closer and closer to a number L when x moves closer and closer to a (but $x \neq a$), we say the function $f(x)$ has a limit L when x approaches to a.
In symbol, we write $\lim _{x \rightarrow a} f(x)=L$ or $f(x) \rightarrow L$ as $x \rightarrow a$.

Note: When we are talking about the limit of a function, $\lim _{x \rightarrow a} f(x)$, we assume that $x \neq a$.
Task 2. Let $f(x)=\frac{x^{3}-8}{x-2}$. The figure shows the graph of $y=f(x)$. (The white dot \circ at $(2,12)$ means that the point is excluded from the graph.)

Determine whether $\lim _{x \rightarrow 0} f(x)$ exists. Find the limit if it exists.
Conclusion: $\lim _{x \rightarrow 0} f(x)$

Task 3. In each of the following, determine whether the limit exists. Find the limit if it exists.
(a)

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x+4}{x-1}
$$

(b)

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}}}{50 x^{3}+x}
$$

(d)

Note: Students can visit the following link for the demonstration https://goo.gl/zbolX5

Example 1. Given that $f(x)=\left\{\begin{array}{ll}x, & \text { if } x>1 \\ 1, & \text { if } x \leq 1\end{array}\right.$ and $g(x)=\left\{\begin{array}{ll}1-x, & \text { if } x \geq 0 \\ x+2, & \text { if } x<0\end{array}\right.$, let $h(x)=f(x)+g(x)$.
(a) Draw the graphs of $y=f(x)$ and $y=g(x)$ in the following.

(b) Find $h(x)$.
(c) In the following graph paper, draw the graph of $y=h(x)$.

(d) Using the graph, determine whether the following limits exist or not. If it exists, find the value.
(i) $\quad \lim _{x \rightarrow 1} h(x)$
(ii) $\lim _{x \rightarrow 0} h(x)$
(iii) $\lim _{x \rightarrow 2} h(x)$

Solution

(b)
(d)

Intervals

An interval is a set of real numbers that lies between two numbers. The two numbers are called the endpoints of the interval.

There are different kinds of intervals defined as follows.
Let a and b are real numbers such that $a<b$.

Notation	Definition	Representation on the number line
(a, b)	all real numbers $x, a<x<b$	
$[a, b]$	all real numbers $x, a \leq x \leq b$	
(a, b]	all real numbers $x, a<x \leq b$	
$[a, b)$	all real numbers $x, a \leq x<b$	
$(-\infty, \infty)$	all real numbers	

For example,
$(0,1]$ represents all real numbers that lies between 0 and 1 , excluding 0 and including 1 ;
$[-5, \infty)$ represents all real numbers greater than or equal to 5 .

Example 2. Express the following in notation of intervals.
(a) All real numbers greater than 3
(b) All real numbers between 2 and 4 inclusively
(c) The domain of $\log x$
(d) The domain of $\sqrt{x-1}$
(e) All real number x such that $x^{2}<1$

Ans: \qquad
Ans: \qquad
Ans: \qquad

Ans: \qquad
Ans: \qquad

Absolute value

The absolute value of a real number is defined as

$$
|x|=\left\{\begin{array}{rr}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{array}\right. \text {. }
$$

For examples, $|5|=5,|-1|=1,|0|=0,|\sqrt{2}|=\sqrt{2}$.

Note: (a) $\quad|x| \geq 0$
(b) On the number line, $|x|$ means the distance of x from the origin and $|a-b|$ means the distance between a and b.

Example 3. Evaluate the following.
$\begin{array}{lll}\text { (a) } \quad|2 \cdot(-5)| & \text { Ans: } \\ \text { (c) }\left|\frac{8}{-2}\right| & \text { Ans: } & \end{array}$
(b) $\quad|2| \cdot|(-5)|$
Ans:
(d) $\frac{|8|}{|-2|}$
Ans: \qquad
(e) $|7-3| \quad$ Ans:
(f) $|3-7|$ Ans: \qquad
(g) $\quad|2+(-5)| \quad$ Ans:
(h) $\quad|2|+|(-5)|$
Ans: \qquad

From the above examples, the conclusions below are obvious.

Properties of absolute value

For all real numbers x and y.
(a) $\quad|-x|=|x|$
(b) $|x|^{2}=x^{2}$ and $|x|=\sqrt{x^{2}}$
(c) $\quad|x \cdot y|=|x| \cdot|y|$
(d) $\quad\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$ where $y \neq 0$
(e) $\quad|x+y|$ is NOT necessary equal to $|x|+|y|$

Example 4. \quad Simplify $(|1-\sqrt{2}|+1)^{2}$.

Solution

Signum function

The signum function $\operatorname{sgn}(x)$ is defined as:
$\operatorname{sgn}(x)= \begin{cases}-1 & \text { when } x<0 \\ 0 & \text { when } x=0 \\ 1 & \text { when } x>0\end{cases}$
e.g. $\operatorname{sgn}(3.6)=1, \operatorname{sgn}(-7)=-1, \operatorname{sgn}(0)=0$.
$\operatorname{sgn}(x)$ is discontinuous at $x=0$.

Ceiling function and Floor function

The ceiling function $\lceil x\rceil$ gives the smallest integer greater than or equal to x. Those non-integral values are rounded up to the nearest integer.

$$
\begin{array}{ll}
\text { e.g. } & \lceil 0.9\rceil=1,\lceil 1.6\rceil=2,\lceil 2\rceil=2 \\
& \lceil-0.5\rceil=0,\lceil-1\rceil=-1,\lceil 0\rceil=0
\end{array}
$$

$\lceil x\rceil$ is discontinuous at every integral value of x.

The floor function $\lfloor x\rfloor$ gives the largest integer less than or equal to x. Those non-integral values are rounded down to the nearest integer.
e.g. $\lfloor 0.9\rfloor=0,\lfloor 1.6\rfloor=1,\lfloor 2\rfloor=2$,
$\lfloor-0.5\rfloor=-1,\lfloor-1\rfloor=-1,\lfloor 0\rfloor=0$.
$\lfloor x\rfloor$ is discontinuous at every integral value of x.

Continuous functions

If the graph of a function f is "connected" when $x=a$, we say f is continuous at $x=a$; however, if the graph of a function f "breaks" when $x=b$, we say f is discontinuous at $x=b$.

$$
y
$$

Here is an important result from continuous function.

$$
\text { If } f \text { is continuous at } x=a \text {, then } \lim _{x \rightarrow a} f(x)=f(a)
$$

If a function is "connected" at any point on an interval, then the function is called a continuous function on the interval.

All elementary functions (four operations and composition functions of power function, exponential function, logarithmic function and trigonometric functions) are continuous on their domains.

In the previous examples, $|x|$ is a continues function. (Why?) $\operatorname{sgn}(x)$, ceiling function and floor function are discontinuous.

The followings are examples of continuous functions and their graphs.
(a) $y=-x^{3}-3 x^{2}+4$

(b) $y=\sin x$

(c) $y=2^{x}$

(d) $y=\log _{4} x$ for $x>0$

(e) $y=\sqrt{x+2}$ for $x \geq-2$

(f)

(g) $y=\tan x$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$

Note: the tangent function, $\tan x$, is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, but it is not continuous on $(-\infty, \infty)$.

2. Limit of functions at a certain value

Example 5. Evaluate each of the following.
(a) $\quad \lim _{x \rightarrow 1}\left(2 x^{2}+x-3\right)$
(b) $\lim _{x \rightarrow \frac{-1}{2}} \frac{x^{3}-4 x+1}{x+1}$

Explanation

Since the above functions are continuous at the given points, the limits can be evaluated by substitution.

Solution

(a)
(b)
ANS: (a) 0
(b) 5.75

Example 6. Evaluate $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$.

Explanation

At the point $x=1$, the above function is undefined and thus discontinuous. However,

$$
\frac{x^{3}-1}{x-1} \equiv x^{2}+x+1 \text { for } x \neq 1 . \therefore \lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1}\left(x^{2}+x+1\right) .
$$

Solution

ANS: 3

Example 7. Find $\lim _{x \rightarrow 8} \frac{x-8}{\sqrt{x+1}-3}$.

Explanation

At the point $x=8$, the above function is undefined and thus discontinuous. However,

$$
\frac{x-8}{\sqrt{x+1}-3} \equiv \sqrt{x+1}+3 \text { for } x \neq 8 . \therefore \lim _{x \rightarrow 8} \frac{x-8}{\sqrt{x+1}-3}=\lim _{x \rightarrow 8}(\sqrt{x+1}+3) .
$$

Solution

ANS: 6
Example 8. Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-2}{x-2}$.

Explanation

When x is close to $2, x^{3}-2$ approaches to 6 thus is non-zero and $x-2$ is close to 0 .
As x approaches 2 from values greater than $2, \frac{x^{3}-2}{x-2}$ increases indefinitely $\left(\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{x-2}=+\infty\right)$; on the other hand, when x approaches 2 from values smaller than $2, \frac{x^{3}-2}{x-2}$ decreases indefinitely $\left(\lim _{x \rightarrow 2^{-}} \frac{x^{3}-2}{x-2}=-\infty\right)$. We say $\lim _{x \rightarrow 2} \frac{x^{3}-2}{x-2}$ does not exist $\left(\right.$ or $\left.\lim _{x \rightarrow 2} \frac{x^{3}-2}{x-2}= \pm \infty\right)$.

Solution

ANS: Limit does not exist

Summary for evaluating limit at a point

$$
\text { For evaluating the limit } \lim _{x \rightarrow a} f(x)
$$

Example 9. Evaluate the following limits.
(a) $\lim _{x \rightarrow-4} \frac{x+4}{x+1}$
(b) $\lim _{x \rightarrow-1} \frac{x+4}{x+1}$
(c) $\quad \lim _{x \rightarrow 0}\left(\frac{x+4}{x+1}\right)^{\frac{1}{2}}$

Solution

ANS: (a) 0
(b) not exist
(c) 2

Example 10. Evaluate the following limits.

(a) $\quad \lim _{x \rightarrow \sqrt{5}} \frac{\sqrt{x^{2}+4}-2}{x}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+4}-2}{x}$

Solution

ANS: (a) $\frac{\sqrt{5}}{5}$
(b) 0

More Examples of limits at a point

Example 11. Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x+7}-2}{x-1}$.

Solution

ANS: $\frac{1}{12}$

Example 12. Find the limit $\lim _{x \rightarrow 0} \frac{(x+1)^{n}-1}{x}$ where n is an integer greater than 2 .

Solution

ANS: n
Example 13. It is known that $\lim _{x \rightarrow-1} \frac{x^{3}+a x^{2}-2 x+3}{x+1}$ exists. Find the value of a and the limit.

Solution

ANS: $\quad a=-4,9$

Example 14. Let $f(x)=x^{2}+x$. Evaluate $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Solution

ANS: $\quad 2 x+1$
Example 15. Let $f(x, y)=\frac{y}{x+y}$.
(a) Evaluate $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$.
(b) Evaluate $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$.
(c) Is $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$?

Solution

ANS:
(a) 1
(b) 0
(c) NO

Theorems on limits

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then
(a) $\lim _{x \rightarrow a} k=k$
(b) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
(c) $\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)$ where k is a constant
(d) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(e) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ where $\lim _{x \rightarrow a} g(x) \neq 0$
(f) If $f(x)$ is a continuous function and $\lim _{x \rightarrow a} g(x)$ exists, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Example 16. It is known that $\lim _{x \rightarrow 2} \frac{f(x)}{x+7}=5$. Does $\lim _{x \rightarrow 2} f(x)$ exist? If yes, find the limit.

Solution

Example 17. Let $f(x)=2 x^{2}+\frac{1}{x}$ and $g(x)=3-\frac{1}{x}$. Does $\lim _{x \rightarrow 0}[f(x)+g(x)]=\lim _{x \rightarrow 0} f(x)+\lim _{x \rightarrow 0} g(x)$ hold? Explain.

Solution

Note: The above example shows that the above theorems fail if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ do not exist.

