# S4 – MATHEMATICS (M2) – CHAPTER 3 Limit and the number e

Class:

WORKSHEET 01

| N | ame: |  |
|---|------|--|
|   |      |  |

[No

| ).: | ] | Date: |  |
|-----|---|-------|--|
|     |   |       |  |

# **Learning Objective**

# 1 Idea of limits

- To understand the concept of the limit of a function.
- To learn finding the limit of a function by using the graph of the function.
- To recognize the definitions of intervals and absolute values.
- To understand the concept of continuous and discontinuous functions.

# 2 Limit of functions at a certain value

- To learn finding the limit at a certain value of a rational function and a function involving surds.
- To learn various theorems on limits of sum, difference, product, quotient, scalar multiple, composite functions and use them to find the limit.

# 1. Idea of limits

Consider the function  $f(x) = \frac{x^3 - 8}{x - 2}$ . f(x) is clearly undefined when x = 2. We want to observe the **behavior of** f(x) when x is close to 2.

**Task 1.**Completing the following table. Give your answers corrected to 4 decimal places.

| x    | 1 | 1.9 | 1.99 | 1.999 | 1.9999 | 2     | 2.0001 | 2.001 | 2.01 | 2.1 | 3 |
|------|---|-----|------|-------|--------|-------|--------|-------|------|-----|---|
| f(x) |   |     |      |       |        | $\ge$ |        |       |      |     |   |

From the above result, when x moves closer and closer to <u>2</u>, f(x) gets closer and closer to <u>...</u> We say "the limit of f(x) is 12 when x tends to 2" and denote as  $\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = 12$ .

For a function f(x), if the function value f(x) gets closer and closer to a number *L* when *x* moves closer and closer to *a* (but  $x \neq a$ ), we say the function f(x) has a limit *L* when *x* approaches to *a*. In symbol, we write  $\lim f(x) = L$  or  $f(x) \rightarrow L$  as  $x \rightarrow a$ .

Note: When we are talking about the limit of a function,  $\lim_{x \to a} f(x)$ , we assume that  $x \neq a$ .

**Task 2.** Let  $f(x) = \frac{x^3 - 8}{x - 2}$ . The figure shows the graph of y = f(x). (The white dot  $\circ$  at (2, 12) means that the point is excluded from the graph.)



Determine whether  $\lim_{x\to 0} f(x)$  exists. Find the limit if it exists.

| Conclusion: | $\lim_{x\to 0} f(x)$ |
|-------------|----------------------|
|             |                      |



Task 3. In each of the following, determine whether the limit exists. Find the limit if it exists.







- (i)  $\lim h(x)$ 
  - $x \rightarrow 1$
- (ii)  $\lim_{x\to 0} h(x)$

(iii) 
$$\lim_{x \to 2} h(x)$$

**Solution** 

(b)

# Intervals

An interval is a set of real numbers that lies between two numbers. The two numbers are called the endpoints of the interval.

There are different kinds of intervals defined as follows.

Let *a* and *b* are real numbers such that a < b.

| Notation                | Definition                             | Representation on the number line |
|-------------------------|----------------------------------------|-----------------------------------|
| ( <i>a</i> , <i>b</i> ) | all real numbers $x$ , $a < x < b$     |                                   |
| [ <i>a</i> , <i>b</i> ] | all real numbers $x$ , $a \le x \le b$ |                                   |
| ( <i>a</i> , <i>b</i> ] | all real numbers $x$ , $a < x \le b$   |                                   |
| [ <i>a</i> , <i>b</i> ) | all real numbers $x$ , $a \le x < b$   |                                   |
| $(-\infty,\infty)$      | all real numbers                       |                                   |

For example,

(0,1] represents all real numbers that lies between 0 and 1, excluding 0 and including 1;

 $[-5, \infty)$  represents all real numbers greater than or equal to 5.

| Example 2. | Expre<br>(a) | ess the following in notation of intervals.<br>All real numbers greater than 3 | Ans: |
|------------|--------------|--------------------------------------------------------------------------------|------|
|            | (b)          | All real numbers between 2 and 4 <i>inclusively</i>                            | Ans: |
|            | (c)          | The domain of $\log x$                                                         | Ans: |
|            | (d)          | The domain of $\sqrt{x-1}$                                                     | Ans: |
|            | (e)          | All real number x such that $x^2 < 1$                                          | Ans: |

S4 Mathematics (Module 2)

# Absolute value

The absolute value of a real number is defined as

For examples, 
$$|5|=5$$
,  $|-1|=1$ ,  $|0|=0$ ,  $|\sqrt{2}|=\sqrt{2}$ .

 $|x| \ge 0$ Note: (a)

> On the number line, |x| means the distance of x from the origin and |a-b| means the distance (b) between a and b.



| Example 3. | Evalu | ate the following           | ng.  |         |                    |      |  |
|------------|-------|-----------------------------|------|---------|--------------------|------|--|
|            | (a)   | $ 2 \cdot (-5) $            | Ans: | <br>(b) | 2 . (-5)           | Ans: |  |
|            | (c)   | $\left \frac{8}{-2}\right $ | Ans: | <br>(d) | $\frac{ 8 }{ -2 }$ | Ans: |  |
|            | (e)   | 7-3                         | Ans: | <br>(f) | 3-7                | Ans: |  |
|            | (g)   | 2+(-5)                      | Ans: | <br>(h) | 2 + (-5)           | Ans: |  |
|            |       |                             |      |         |                    |      |  |

From the above examples, the conclusions below are obvious.

#### **Properties of absolute value**

For all real numbers x and y. (a) |-x| = |x|(b)  $|x|^2 = x^2$  and  $|x| = \sqrt{x^2}$ (c)  $|x \cdot y| = |x| \cdot |y|$  $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$  where  $y \neq 0$ (d) |x + y| is NOT necessary equal to |x| + |y|(e)

Simplify  $(|1 - \sqrt{2}| + 1)^2$ . Example 4.

**Solution** 

y

#### ANS: 2

# **Signum function**

The *signum function* sgn(x) is defined as:

 $\operatorname{sgn}(x) = \begin{cases} -1 & \text{when } x < 0\\ 0 & \text{when } x = 0\\ 1 & \text{when } x > 0 \end{cases}$ 

e.g. sgn(3.6) = 1, sgn(-7) = -1, sgn(0) = 0.

sgn(x) is discontinuous at x = 0.

# **Ceiling function and Floor function**

The *ceiling function* [x] gives the smallest integer greater than or equal to x. Those non-integral values are rounded up to the nearest integer.

e.g. [0.9] = 1, [1.6] = 2, [2] = 2,[-0.5] = 0, [-1] = -1, [0] = 0.

[x] is discontinuous at every integral value of x.

The *floor function* [x] gives the largest integer less than or equal to x. Those non-integral values are rounded down to the nearest integer.

- e.g. [0.9] = 0, [1.6] = 1, [2] = 2,[-0.5] = -1, [-1] = -1, [0] = 0.
- |x| is discontinuous at every integral value of x.







# Continuous functions



If the graph of a function f is "<u>connected</u>" when x = a, we say f is <u>continuous</u> at x = a; however, if the graph of a function f "<u>breaks</u>" when x = b, we say f is <u>discontinuous</u> at x = b.

у

Here is an important result from continuous function.

If f is continuous at 
$$x = a$$
, then  $\lim_{x \to a} f(x) = f(a)$ 

If a function is "connected" at any point on an interval, then the function is called a continuous function on the interval.

All elementary functions (four operations and composition functions of power function, exponential function, logarithmic function and trigonometric functions) are <u>continuous</u> on their <u>domains</u>.

In the previous examples, |x| is a continues function. (Why?) sgn(x), ceiling function and floor function are discontinuous.

The followings are examples of continuous functions and their graphs.



I

### 2. Limit of functions at a certain value

**Example 5.** Evaluate each of the following.

(a) 
$$\lim_{x \to 1} (2x^2 + x - 3)$$
  
(b)  $\lim_{x \to \frac{-1}{2}} \frac{x^3 - 4x + 1}{x + 1}$ 

#### Explanation

Since the above functions are <u>continuous</u> at the given points, the limits can be evaluated by <u>substitution</u>.

### **Solution**

(a)

(b)

ANS: (a) 0 (b) 5.75

**Example 6.** Evaluate  $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$ .

#### **Explanation**

At the point x = 1, the above function is undefined and thus <u>discontinuous</u>. However,  $\frac{x^3 - 1}{x - 1} \equiv x^2 + x + 1 \text{ for } x \neq 1 \dots \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} (x^2 + x + 1) .$ 

**Solution** 

#### ANS: 3

# **Example 7.** Find $\lim_{x\to 8} \frac{x-8}{\sqrt{x+1}-3}$ .

#### **Explanation**

At the point x = 8, the above function is undefined and thus <u>discontinuous</u>. However,

$$\frac{x-8}{\sqrt{x+1}-3} \equiv \sqrt{x+1}+3 \text{ for } x \neq 8 \dots \lim_{x \to 8} \frac{x-8}{\sqrt{x+1}-3} = \lim_{x \to 8} (\sqrt{x+1}+3) .$$

**Solution** 

ANS: 6

**Example 8.** Evaluate  $\lim_{x\to 2} \frac{x^3-2}{x-2}$ .

#### Explanation

When x is close to 2,  $x^3 - 2$  approaches to 6 thus is <u>non-zero</u> and x - 2 <u>is close to 0</u>. As x approaches 2 from values greater than 2,  $\frac{x^3 - 2}{x - 2}$  increases indefinitely  $\left(\lim_{x \to 2^+} \frac{x^3 - 2}{x - 2} = +\infty\right)$ ; on the other hand, when x approaches 2 from values smaller than 2,  $\frac{x^3 - 2}{x - 2}$  decreases indefinitely  $\left(\lim_{x \to 2^-} \frac{x^3 - 2}{x - 2} = -\infty\right)$ . We say  $\lim_{x \to 2} \frac{x^3 - 2}{x - 2}$  does not exist  $\left( \operatorname{or} \lim_{x \to 2^-} \frac{x^3 - 2}{x - 2} = \pm\infty \right)$ .

ANS: Limit does not exist

# Summary for evaluating limit at a point



**Example 9.** Evaluate the following limits.

(a) 
$$\lim_{x \to -4} \frac{x+4}{x+1}$$
  
(b)  $\lim_{x \to -1} \frac{x+4}{x+1}$   
(c)  $\lim_{x \to 0} \left(\frac{x+4}{x+1}\right)^{\frac{1}{2}}$ 

**Solution** 

ANS: (a) 0 (b) not exist (c) 2 **Example 10.** Evaluate the following limits.

(a) 
$$\lim_{x \to \sqrt{5}} \frac{\sqrt{x^2 + 4} - 2}{x}$$
  
(b)  $\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x}$ 

**Solution** 

ANS: (a)  $\frac{\sqrt{5}}{5}$  (b) 0

# More Examples of limits at a point

**Example 11.** Evaluate  $\lim_{x \to 1} \frac{\sqrt[3]{x+7} - 2}{x-1}$ . Solution



**Example 12.** Find the limit  $\lim_{x\to 0} \frac{(x+1)^n - 1}{x}$  where *n* is an integer greater than 2.

#### **Solution**

ANS: *n* 

**Example 13.** It is known that  $\lim_{x \to -1} \frac{x^3 + ax^2 - 2x + 3}{x + 1}$  exists. Find the value of *a* and the limit.

#### **Solution**

**ANS**: a = -4, 9

**Example 14.** Let  $f(x) = x^2 + x$ . Evaluate  $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ . Solution

**ANS:** 2x+1

\* **Example 15.** Let  $f(x, y) = \frac{y}{x+y}$ .

- (a) Evaluate  $\lim_{y\to 0} \lim_{x\to 0} f(x, y)$ .
- (b) Evaluate  $\lim_{x\to 0} \lim_{y\to 0} f(x, y)$ .
- (c) Is  $\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{x \to 0} \lim_{y \to 0} f(x, y)$ ?

**Solution** 

ANS: (a) 1 (b) 0 (c) NO

#### Theorems on limits

If  $\lim_{x\to a} f(x)$  and  $\lim_{x\to a} g(x)$  exist, then

(a) 
$$\lim_{x \to a} k = k$$

(b) 
$$\lim_{x \to a} \left[ f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

(c)  $\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x)$  where k is a constant

(d) 
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

(e) 
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ where } \lim_{x \to a} g(x) \neq 0$$

(f) If f(x) is a continuous function and  $\lim_{x\to a} g(x)$  exists, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

**Example 16.** It is known that  $\lim_{x \to 2} \frac{f(x)}{x+7} = 5$ . Does  $\lim_{x \to 2} f(x)$  exist? If yes, find the limit.

#### **Solution**

Example 17. Let 
$$f(x) = 2x^2 + \frac{1}{x}$$
 and  $g(x) = 3 - \frac{1}{x}$ . Does  $\lim_{x \to 0} [f(x) + g(x)] = \lim_{x \to 0} f(x) + \lim_{x \to 0} g(x)$  hold?  
Explain.

#### Solution

Note: The above example shows that the above theorems fail if  $\lim_{x \to a} f(x)$  and  $\lim_{x \to a} g(x)$  do not exist.