Task X: Construction of the Sierpinski triangle

Fractals are infinitely patterns that are self-similar across different scales. To construct a dynamic worksheet to create the first few patterns of the Sierpinski triangle.

Basic strategy for the creation:

1. Contract the present pattern.

2. Copy and translate the contracted pattern to create the next pattern.

Steps	Objects to be created	Action
1.	Slider n	- Select " $\stackrel{\square=2}{\bullet}$ Slider" button and click on the graphics window - Set the name of the slider as $n ; \min =1 ; \max =3$; increment $=1$ - Click "OK"
2.	An equilateral triangle with length 1 (the 1st pattern)	- Type the following command in the input bar: $\mathbf{P 1}=\operatorname{Polyg} \mathrm{n}(\mathbf{(0 , 0}),(1,0), 3)$ - In the Advanced Tab of the properties of polygon P1, input " $\mathrm{n}=1$ " as the condition to show object.
3.	3 translation vectors	- Type the following command in the input bar: $\mathrm{TV}=\{(0,0),(1 / 4, \operatorname{sqrt}(3) / 4),(1 / 2,0)\}$ - Remark: The points in TV correspond to the positions of the translation of the contracted patterns in the next few steps

4.	The 2nd pattern	- Type the following command in the input bar: P2 = Flatten(Sequence(Translate(Dilate(P1, $1 / 2$), $\operatorname{Element}($ PT, i)), i, 1, 3)) - Remark: Several functions are combined to create the next pattern: - Dilate: enlarges or contracts an object - Translate: translates an object by a vector - Element: yields an element in a list - Sequence: creates a list of objects followed by an index - Flatten: combines all lists into one list - In the Advanced Tab of the properties of polygon P 2 , input " $\mathrm{n}=2$ " as the condition to show object.
5.	The 3rd pattern	- Type the following command in the input bar to create the 3rd pattern: P3 = Flatten(Sequence(Translate(Dilate(P2, $1 / 2$), Element(PT, i)), i, 1, 3)) - In the Advanced Tab of the properties of polygon P3, input " $\mathrm{n}=3$ " as the condition to show object.
6.	Checking of the first 3 patterns	- Move the point on the slider of n to check that the first 3 patterns can be shown correctly.
7.	Adjust the max of slider of n	- Change the max of slider of n to 6 .
8.	The 4th, 5th and 6th pattern	- Type the following command in the input bar to create the 4th, 5th and 6th pattern respectively: P4 = Flatten(Sequence(Translate(Dilate(P3, $1 / 2$), $\operatorname{Element}($ PT, i)), i, 1, 3)) P5 = Flatten(Sequence(Translate(Dilate(P4, $1 / 2$), $\operatorname{Element}($ PT, i)), i, 1, 3)) P6 = Flatten(Sequence(Translate(Dilate(P5, $1 / 2$), $\operatorname{Element}(\mathbf{P T}, ~ i)$), i, 1, 3)) - In the Advanced Tab of the properties of polygon P4, P5 and P6, input " $n=4$ ", " $n=5$ " and " $n=6$ " respectively as the conditions to show objects.

Exercise:

Try to construct a GeoGebra file that can create the Sierpinski carpet.

