Monotonicity - Monotonie

Definition: The function f is defined in an interval I.
If for all $x_{1,} x_{2} \in I$ where $x_{1}<x_{2}$ such that following holds:

$$
f\left(x_{1}\right) \leqslant f\left(x_{2}\right),
$$

then the function f in I is monotonically increasing.

If there is no equality, then the function f in I is strictly increasing.

$$
f\left(x_{1}\right) \geqslant f\left(x_{2}\right),
$$

then the function f in I is monotonically decreasing.

If there is no equality, then the function f in I is strictly decreasing.

Theorem (Monotoniesatz):

Let the function f be differentiable in the interval I. If for all x in I following holds:

$$
f^{\prime}(x)>0 \quad f^{\prime}(x)<0
$$

then f is strictly increasing in I .
then f is strictly decreasing in I .

Example 1: Investigate the monotonicity of the function $f(x)=2^{x}$.
Solution: If x_{1}, x_{2} are real numbers, where $x_{1}<x_{2}$, then $x_{2}=x_{1}+d$ where $d>0$. For the following values of the function we have: $f\left(x_{2}\right)=2^{x_{2}}=2^{x_{1}+d}=2_{1}^{x} \cdot 2^{d}$. And, as $d>0$ then $2^{d}>1$. So, $f\left(x_{2}\right)=2_{1}^{x} \cdot 2^{d}>2_{1}^{x}=f\left(x_{1}\right)$. Therefore, f is strictly increasing ("monoton wachsend").

Example 2: (Applying the theorem on monotonicity)
Investigate the monotonicity of the function $f(x)=\frac{1}{3} x^{3}-x$
Solution: $f^{\prime}(x)=x^{2}-1$. The inequality $x^{2}-1>0$ is satisfied for $x<-1$ and $x>1$ and the inequality $x^{2}-1<0$ is satisfied for $-1<x<1$. Hence, the function f is strictly decreasing for $-1 \leqslant x \leqslant 1$ and strictly increasing for $x \leqslant-1$ and $x \geqslant 1$.
ma-bk 11a

Exercises

