SRIHARI MATHEMATICS ACADEMY
 (TUITION CENTER),
 2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K),
 COIMBATORE(D.T) - 641402

MOBILE NO: 9944196663
E-mail: rangarajankg@gmail.com

CO ORDINATE GEOMETRY

1. Distance between two points $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
2. Mid- point of the line segment $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
3. Section Formula
a) Internal division $\left[\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right]$
b) External division $\left[\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right]$
4. Centroid of a triangle $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
5. Heron's Formula (sides are given)

Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$
6. Area of the triangle (vertices are given)

$$
\begin{aligned}
& A=\frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\} \text { sq. units } \\
& \text { or } \\
& =\frac{1}{2}\left\{\begin{array}{lll}
x_{1} & x_{2} & x_{3} x_{1} \\
y_{1} & y_{2} & y_{3} y_{1}
\end{array}\right\} \\
& =\frac{1}{2}\left\{\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}\right)-\left(x_{2} y_{1}+x_{3} y_{2}+x_{1} y_{3}\right)\right\} \text { sq. units }
\end{aligned}
$$

7. Area of a triangle can never be negative
8. Area of a triangle must take the absolute value in case area happens to be negative.
9. Condition for Collinearity

$$
\begin{aligned}
& \qquad x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0 \\
& \text { or } \\
& x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}=+x_{1} y_{3}+x_{2} y_{1}+x_{3} y_{2}
\end{aligned}
$$

SRIHARI MATHEMATICS ACADEMY
(TUITION CENTER),
2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K), COIMBATORE(D.T) - 641402

MOBILE NO: 9944196663
10.Area of a Quadrilateral

$$
\begin{aligned}
& A=\frac{1}{2}\left\{\left(x_{1}-x_{3}\right)\left(y_{2}-y_{1}\right)-\left(x_{2}-x_{4}\right)\left(y_{1}-y_{3}\right)\right\} \text { sq. units } \\
& \text { or } \\
& =\frac{1}{2}\left\{\begin{array}{lll}
x_{1} & x_{2} & x_{3} x_{4} x_{1} \\
y_{1} & y_{2} & y_{3} y_{4} y_{1}
\end{array}\right\} \\
& =\frac{1}{2}\left\{\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{1}\right)-\left(x_{2} y_{1}+x_{3} y_{2}+x_{4} y_{3}+x_{1} y_{4}\right)\right\}
\end{aligned}
$$

sq. units
11.The inclination of X axis and every line parallel to X axis is 0°
12. The inclination of Y axis and every line parallel to Y axis is 90°
13. Slope of the straight line $m=\tan \theta, \quad 0 \leq \theta<180^{\circ}, \theta \neq 90^{\circ}$
14.The slope of the line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
15.The slope of the line $a x+b y+c=0$ is $m=\frac{-a}{b}=\frac{- \text { coefficient of } x}{\text { coefficient of } y}$
16.Slope of the vertical line is undefined.
17.Two non-vertical lines are parallel if and only if their slopes are equal i.e. $m_{1}=m_{2}$
18. Two non-vertical lines with slopes m_{1} and m_{2} are perpendicular if and only if

$$
m_{1} \times m_{2}=-1
$$

19.In any triangle, exterior angle is equal to sum of the opposite interior angles
20.If the slopes of both the pairs of opposite sides are equal then the quadrilateral is a parallelogram
21.The equation of Y axis is $X=0$
22.The equation of X axis is $Y=0$
23. The equation of a straight line parallel to X axis is $y=b$
24.The equation of a straight line parallel to Y axis is $x=c$
25.If $c>0$, then the line $x=c$ lies right to the side of the Y axis
26.If $c<0$, then the line $x=c$ lies left to the side of the Y axis
27.If $c=0$, then the line $x=c$ is the Y axis itself

SRIHARI MATHEMATICS ACADEMY
 (TUITION CENTER),
 2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K), COIMBATORE(D.T) - 641402

MOBILE NO: 9944196663
28.Slope Intercept form

$$
y=m x+c m-\text { slope } \quad c-y \text { intercept }
$$

29.If a line with slope $m, m \neq 0$ makes x intercept d then the equation of the straight line is $y=m(x-d)$
30.If a line with slope m and passing through the origin, then the equation of the straight line is $y=m x$
31.For, the point (x, y) in a $x y$ plane, the x coordinate x is called "Abscissae". andthe y coordinate y is called "Ordinate"
32. For converting Celsius to Fahrenheit is $F=\frac{9}{5} C+32$
33.Point-Slope Form

The equation of the straight line passing through a given point $\left(x_{1}, y_{1}\right)$ and having a slope $m \quad y-y_{1}=m\left(x-x_{1}\right)$
34. Two Point Form

The equation of the straight line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

35.Intercept Form

$$
\frac{x}{a}+\frac{y}{b}=1
$$

36. Equation of a line parallel to the line $a x+b y+c=0$ is $a x+b y+k=0$
37.Equation of a line perpendicular to the line $a x+b y+c=0$ is

$$
b x-a y+k=0
$$

38.Two straight lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ where the coefficients are non-zero are
(i) parallel if and only if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$ i.e. $a_{1} b_{2}-a_{2} b_{1}=0$
(ii) perpendicular if and only if $a_{1} a_{2}+b_{1} b_{2}=0$

