Task Y: Construction of the Koch snowflake

The Koch snowflake is a fractal curve. To construct a dynamic worksheet to create the first few patterns of the Koch snowflake.

Basic steps for the creation:
Starting with an equilateral triangle, then recursively altering each line segment as follows:

1. Divide the line segment into three segments of equal length.
2. Draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
3. Remove the line segment that is the base of the triangle from step 2 .

What we do in GeoGebra:
Based on the 2 end points of each line segment of the current pattern, create 3 new points for each line segments and join the points in correct order to get the new pattern.

Steps	Objects to be created	Action
1.	Slider n	- Select " $\stackrel{a=2}{\bullet}$ Slider" button and click on the graphics window - Set the name of the slider as $n ; \min =1 ; \max =3$; increment = 1 - Click "OK"
2.	Points A, B and C	- Click in the Graphics window on $(0,0)$ and $(10,0)$ to create points A and B. - Type the following command in the input bar to create point C : $\mathbf{C}=\operatorname{Rotate}\left(\mathbf{B}, 60^{\circ}, \mathbf{A}\right)$
3.	An equilateral triangle (the 1st pattern)	- Open the spreadsheet window - In cell A1, input $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{A}\}$ - In cell B1, input $=\operatorname{Polygon}(\mathbf{A 1})$ - In the Advanced Tab of the properties of polygon B1, input " $\mathrm{n}=1$ " as a condition to show object. Basic Colour Style Advanced Scripting Condition to Show Object $n \stackrel{?}{=} 1$
4.	The 2nd pattern	- In cell A2, input Flatten(Sequence(If(i<Length(A1), \{A1(i), $(2 \mathrm{~A} 1(\mathbf{i})+\mathbf{A 1}(\mathbf{i}+1)) / 3, \operatorname{Rotate}\left(\mathbf{A 1}(\mathbf{i}), \mathbf{1 2 0}^{\circ}\right.$, $(2 A 1(i)+A 1(i+1)) / 3),(A 1(i)+2 A 1(i+1)) / 3\}$, \{A\}), i, 1, Length(A1))) - In cell B2, input $=\operatorname{Polyg}$ (A2) - Remark: - A1(i) is the same as element(A1,i) ■ $\quad(2 \mathrm{~A} 1(\mathbf{i})+\mathrm{A} 1(\mathbf{i}+1)) / 3$, $\operatorname{Rotate}\left(A 1(i), 120^{\circ},(2 A 1(i)+A 1(i+1)) / 3\right)$, (A1(i) $+2 \mathrm{~A} 1(\mathrm{i}+1)) / 3$ are the 3 new points created for each line segments - The command If(i < Length(A1), $\{$ the 3 new points $\},\{\mathbf{A}\})$ checks that new points will be created for every elements stored in cell A1, except the last element (A) - Sequence(... , i, 1, Length(A1)) will generate a list of objects according to the number of elements in cell A1

8.	The 4th, 5th and 6th pattern	- Similar to step 5, select cell A3 and B3 and copy the formula up to the 6th row. - In the Advanced Tab of the Object Properties of B4, B5 and B6, input " $\mathrm{n}=4$ ", " $\mathrm{n}=5$ " and " $\mathrm{n}=6$ " respectively as the conditions to show objects.

Exercise:

Try to construct a GeoGebra file that can create the Minkowski Island up to the 4th pattern.

For the Minkowski Island, each unit of line segment is altered in the following way:

