[MAA 2.2] QUADRATICS

SOLUTIONS

Compiled by: Christos Nikolaidis

O. Practice questions

1. (a) $\Delta=9+16=25, x=\frac{3 \pm 5}{2}$ so $x=4$ or $x=-1$
(b) $x^{2}-3 x=0 \Leftrightarrow x(x-3)=0 \Leftrightarrow x=0$ or $x=3$
(c) $x^{2}-4=0 \Leftrightarrow x^{2}=4 \Leftrightarrow x= \pm 2$
2. (a) $\Delta=4+12=16, x=\frac{2 \pm 4}{2}$ so $x=3$ or $x=-1$
(b) $\Delta=16+48=64, x=\frac{4 \pm 8}{4}$ so $x=3$ or $x=-1$
(c) For f, vertex $(1,-4)$. For g, vertex $(1,-8)$
(d)

3.

	$f(x)=2 x^{2}-12 x+10$	$f(x)=2 x^{2}-12 x+18$	$f(x)=2 x^{2}-12 x+23$
Discriminant	$\Delta=64$	$\Delta=0$	$\Delta=-40$
y-intercept	10	18	23
Roots	1,5	3 (double),	No real roots,
Factorisation	$f(x)=2(x-1)(x-5)$	$f(x)=2(x-3)^{2}$	No factorization
axis of symmetry	$x=3$	$x=3$	$x=3$
Vertex	$\mathrm{V}(3,-8)$	$\mathrm{V}(3,0)$	$\mathrm{V}(3,5)$
Vertex form $f(x)=a(x-h)^{2}+k$	$f(x)=2(x-3)^{2}-8$	$f(x)=2(x-3)^{2}$	$f(x)=2(x-3)^{2}+5$
Solve $f(x) \geq 0$	$x \leq 1$ or $x \geq 5$	$x \in R$	$x \in R$
Solve $f(x)>0$	$x<1$ or $x>5$	$x \in R-\{3\}$	$x \in R$
Solve $f(x) \leq 0$	$1 \leq x \leq 5$	$x=3$	No solutions (It is always positive)
Solve $f(x)<0$	$1<x<5$	No solutions (It is always positive or $0)$	Nolutions (It is always positive)

4. (a) (i) $x=10 \quad x=20$
(ii) $y=4(x-10)(x-20)$
(b) (i) $(15,-100)$
(ii) $y=4(x-15)^{2}-100$
(iii) $x=15$
(iv) $y_{\text {min }}=-100$
(c) $y=800$
(d)

5. (a) (i) $x=10 \quad x=20$
(ii) $y=-4(x-10)(x-20)$
(b) (i) $(15,100)$
(ii) $y=-4(x-15)^{2}+100$
(iii) $x=15$
(iv) $y_{\text {max }}=100$
(c) $y=-800$
(d)

6. (a) $x=4$
(b) $y=12$ since $(8,12)$ is symmetric to $(0,12)$ about $x=4$
(c) $y=5$ since $(1,5)$ is symmetric to $(7,5)$ about $x=4$
7. (a) (i) $x^{2}-3 x+4=x+1 \Leftrightarrow x^{2}-4 x+3=0 \Leftrightarrow x=1$ or $x=3$

Points (1,2) and (3,4) (OR directly obtained by GDC graph)
(ii) $x^{2}-3 x+4=x \Leftrightarrow x^{2}-4 x+4=0 \Leftrightarrow x=2$

Point (2,2) (OR directly obtained by GDC graph)
(iii) $x^{2}-3 x+4=x-1 \Leftrightarrow x^{2}-4 x+5=0 \quad$ no real solution

No Point of intersection
(b)

A. Exam style questions (SHORT)

8. (a) $x^{2}-3 x-10=0 \Rightarrow x=5$ or $x=-2$
(b) $x^{2}-3 x-10=(x-5)(x+2)$
9. (a) $p=-\frac{1}{2}, q=2$ or vice versa
(b) By symmetry C is midway between $p, q \Rightarrow x$-coordinate is $\frac{-1 / 2+2}{2}=\frac{3}{4}$
10. (a) $f(x)=0$

$$
x=\frac{1 \pm \sqrt{9}}{2}
$$

intercepts are $(-1,0)$ and $(2,0)(\operatorname{accept} x=-1, x=2)$
(b) $x_{v}=\frac{x_{1}+x_{2}}{2}$ OR $\quad x_{v}=-\frac{b}{2 a}$
$x_{v}=0.5$
11. $(7-x)(1+x)=0 \Leftrightarrow x=7$ or $x=-1$

B: $x=\frac{7+(-1)}{2}=3$
$y=(7-3)(1+3)=16$
12. $y=(x+2)(x-3)=x^{2}-x-6$

Therefore, $p=-1, q=-6$
OR
$0=4-2 p+q$
$0=9+3 p+q$
$p=-1, q=-6$
13. (a) $f(x)=0 \Leftrightarrow 2 x(4-x)=0 \Leftrightarrow x=4, x=0$
x-intercepts are at 4 and 0 (accept $(4,0)$ and $(0,0))$
(b) (i) $x=2$ (must be equation)
(ii) substituting $x=2$ into $f(x) \Rightarrow y=8$
14.

Expression	+-0
a	-
c	-
$b^{2}-4 a c$	0
$-\frac{b}{2 a}$	+
b	+

15.

Expression	+-0
a	-
c	0
$b^{2}-4 a c$	+
$-\frac{b}{2 a}$	+
b	+

16.

Expression	$+\quad-0$
a	+
c	-
$b^{2}-4 a c$	+
$-\frac{b}{2 a}$	+
b	-

17. (b) Vertex is $(3,5)$
(a) Directly $f(x)=(x-3)^{2}+5$

OR $f(x)=x^{2}-6 x+14=x^{2}-6 x+9-9+14=(x-3)^{2}+5$
18. (a) $2 x^{2}-8 x+5=2\left(x^{2}-4 x+4\right)+5-8=2(x-2)^{2}-3$

OR vertex at $(2,-3) \Rightarrow y=2(x-2)^{2}-3$
$\Rightarrow \quad a=2, p=2, q=-3$
(b) Minimum value of $f(x)=-3$
19. (a) Vertex is $(-0.5,1.5)$
(b) $f(x)=2(x+0.5)^{2}+1.5$
20. (a) Vertex is $(-0.5,-0.75)$
(b) $f(x)=-(x+0.5)^{2}-0.75$
21. (a) $q=-2, r=4$ or $q=4, r=-2$
(b) $x=1$ (must be an equation)
(c) substituting $(0,-4)$ into the equation: $-4=-8 p \Leftrightarrow p=\frac{4}{8}\left(=\frac{1}{2}\right)$
22. (a) Since the vertex is at $(3,1)$

$$
h=3, k=1
$$

(b) $(5,9)$ is on the graph $\Rightarrow 9=a(5-3)^{2}+1$ $\Leftrightarrow 9=4 a+1 \Leftrightarrow 4 a=8 \Leftrightarrow a=2$
(c) $y=2(x-3)^{2}+1=2\left(x^{2}-6 x+9\right)+1=2 x^{2}-12 x+19$
23. (a) $h=3 k=2$
(b) $y \leq 2$
(c) $\quad f(x)=-(x-3)^{2}+2=-x^{2}+6 x-9+2=-x^{2}+6 x-7$
24. (a) (i) $h=-1$, (ii) $k=2$
(b) $a(1+1)^{2}+2=0 \Leftrightarrow a=-0.5$
25. (a) (i) $p=1, q=5($ or $p=5, q=1)$
(ii) $x=3 \quad$ (must be an equation)
(b) $y=(x-1)(x-5)=x^{2}-6 x+5=(x-3)^{2}-4$

OR For $x=3, y=-4 \Rightarrow y=(x-3)^{2}-4$
26. (a) (i) $m=3$ (ii) $p=2$
(b) $\quad 0=d(1-3)^{2}+2 \quad$ OR $\quad 0=d(5-3)^{2}+2 \quad$ OR $\quad 2=d(3-1)(3-5)$ $d=-\frac{1}{2}$
27. (a) $p=-2 q=4$ (or $p=4, q=-2$)
(b) $y=a(x+2)(x-4)$
$8=a(6+2)(6-4) \Leftrightarrow 8=16 a \Leftrightarrow a=\frac{1}{2}$
(c) $y=\frac{1}{2}(x+2)(x-4)=\frac{1}{2}\left(x^{2}-2 x-8\right)=\frac{1}{2} x^{2}-x-4$
(d) $y=\frac{1}{2}(x-1)^{2}-\frac{9}{2}$
28. (a) $f(x)=-10(x+4)(x-6)$
(b) METHOD 1

Vertex: $x=1, y=-10(1+4)(1-6)$, Hence $f(x)=-10(x-1)^{2}+250$

METHOD 2

complete the square $f(x)=-10\left(x^{2}-2 x-24\right)=-10\left((x-1)^{2}-1-24\right)=-10(x-1)^{2}+250$
(c) $f(x)=-10(x+4)(x-6)=-10\left(x^{2}-6 x+4 x-24\right)=240+20 x-10 x^{2}$

OR
$f(x)=-10(x-1)^{2}+250=-10\left(x^{2}-2 x+1\right)+250=240+20 x-10 x^{2}$
29. $(2,-3)$ and $(6,9)$

30. $(4,-1)$

31. no points of intersection

32. $(-2,1)$ and $(2,1)$

33. $4 x^{2}+4 k x+9=0$

Only one solution $\Rightarrow b^{2}-4 a c=0 \Rightarrow 16 k^{2}-4(4)(9)=0$
$k^{2}=9 \Leftrightarrow k= \pm 3$
But given $k>0, k=3$
34. One solution \Rightarrow discriminant $=0$

$$
3^{2}-4 k=0 \Leftrightarrow 9=4 k \Leftrightarrow k=\frac{9}{4}\left(=2 \frac{1}{4}, 2.25\right)
$$

35. (a) $(k-3)^{2}-4 \times k \times 1=0, k^{2}-10 k+9=0$

$$
k=1, k=9
$$

(b) $k=1, k=9$
36. (a) $\Delta=0 \Leftrightarrow(-4 k)^{2}-4(2 k)(1)=0 \Leftrightarrow 16 k^{2}-8 k=0 \Leftrightarrow 8 k(2 k-1)=0$

$$
k=\frac{1}{2}
$$

(b) vertex is on the x-axis $\Rightarrow \mathrm{p} \geq 0$
37. Discriminant $\Delta=(-2 k)^{2}-4, \Delta>0$
$(2 k)^{2}-4>0 \Rightarrow 4 k^{2}-4>0$
Solve $4 k^{2}-4=0 \Leftrightarrow 4 k^{2}=4 \Leftrightarrow k^{2}=1 \Leftrightarrow k= \pm 1$
THEN $k<-1$ or $k>1$
38. $\Delta=9-4 k>0 \Leftrightarrow 9>4 k \Leftrightarrow k<2.25$
crosses the x-axis if $k=1$ or $k=2$
39. For $k x^{2}-3 x+(k+2)=0$ to have two distinct real roots then $k \neq 0$ and $9-4 k(k+2)>0$
$4 k^{2}+8 k-9<0$, hence $-2.803<k<0.803$
Set of values of k is $-2.80<k<0.803, k \neq 0$
40.

$$
\begin{aligned}
& \Delta=4-4 k(3 k+2) \quad\left(=-12 k^{2}-8 k+4,=-4(k+1)(3 k-1)\right) \\
& \Delta=0 \Rightarrow k=-1, k=\frac{1}{3}
\end{aligned}
$$

For 2 distinct roots, $\Delta>0$
$-1<k<\frac{1}{3}$
41. $100-4(1+2 k)(k-2) \geq 0$. Graph

$-3 \leq k \leq 4.5$ (accept $-3<k<4.5$)
42.

Using $b^{2}-4 a c=(k-3)^{2}-4 k(k-8)$
$-3 k^{2}+26 k+9=0$
$\Rightarrow k=-\frac{1}{3}, k=9$
$-3 k^{2}+26 k+9<0 \quad\left(3 k^{2}-26 k-9>0\right)$
$k<-\frac{1}{3}$ or $k>9$
43. Let $f(x)=a x^{2}+b x+c$ where $a=1, b=(2-k)$ and $c=k^{2}$.

Then for $a>0, f(x)>0$ for all real values of x if and only if
$b^{2}-4 a c<0 \Leftrightarrow(2-k)^{2}-4 k^{2}<0$
$\Leftrightarrow 4-4 k+k^{2}-4 k^{2}<0 \Leftrightarrow 3 k^{2}-4 k-4>0$
$\Leftrightarrow(3 k-2)(k+2)>0 \Leftrightarrow k>\frac{2}{3}, k<-2$
44. $m(x+1) \leq x^{2} \Rightarrow x^{2}-m x-m \geq 0$

Hence $\Delta=b^{2}-4 a c \leq 0 \Rightarrow m^{2}+4 m \leq 0$
Now using a sketch of quadratic (or otherwise): $-4 \leq m \leq 0$
45. For intersection: $m x+5=4-x^{2}$ or $x^{2}+m x+1=0$.

For tangency: discriminant $=0$
Thus, $m^{2}-4=0$, so $m= \pm 2$
46. $2 x^{2}+2 x-1=x^{2}-m \Leftrightarrow x^{2}+2 x+m-1=0$.
$\Delta=0 \Leftrightarrow 4-4(m-1)=0 \Leftrightarrow 8-4 m=0 \Leftrightarrow m=2$

B. Exam style questions (LONG)

47. (a) Vertex is $(4,8)$
(b) Substituting -10 $=a(7-4)^{2}+8 \Leftrightarrow a=-2$
(c) For y-intercept, $x=0, y=-24$
(d) $-2(x-4)^{2}+8=0 \Leftrightarrow 2(x-4)^{2}=8 \Leftrightarrow(x-4)^{2}=4 \Leftrightarrow x-4= \pm 2$
$\Leftrightarrow x=6$ or $x=2$
OR by expanding and then solve, $x=6$ or $x=2$
(e)

48. (a) substituting $(-4,3)$
$3=a(-4)^{2}+b(-4)+c \Rightarrow 16 a-4 b+c=3$
(b) $3=36 a+6 b+c$
$-1=4 a-2 b+c$
(c) $\quad a=0.25, b=-0.5, c=-3 \quad$ (accept fractions)
$f(x)=0.25 x^{2}-0.5 x-3$
(d) $f(x)=0.25(x-1)^{2}-3.25 \quad$ (accept $h=1, k=-3.25, a=0.25$, or fractions)
49. (a) $\Delta=0 \Leftrightarrow q^{2}-4(4)(25)=0 \Leftrightarrow q^{2}=400 \Leftrightarrow q=20, q=-20$
(b) $x=2.5$
(c) $(0,25)$
(d)

50. (a) line and graph intersect when $3 x^{2}-x+4=m x+1 \Leftrightarrow 3 x^{2}-(1+m) x+3=0$.
$\Delta=(1+m)^{2}-36$
(i) The line is tangent when $\Delta=0 \Leftrightarrow(1+m)^{2}=36 \Leftrightarrow 1+m= \pm 6 \Leftrightarrow m=5, m=-7$
(ii) Two points of intersection when $\Delta>0 \Leftrightarrow m<-7, m>5$
(iii) No points of intersection when $\Delta<0 \Leftrightarrow-7<m<5$.
(b) When $m=5,3 x^{2}-6 x+3=0 \Leftrightarrow x^{2}-2 x+1=0 \Leftrightarrow x=1$. Then $y=6$. Point $(1,6)$.

When $m=-7,3 x^{2}+6 x+3=0 \Leftrightarrow x^{2}+2 x+1=0 \Leftrightarrow x=-1$. Then $y=8$. Point $(-1,8)$.
51. Let $\mathrm{A}\left(a, a^{2}\right)$ and $\mathrm{B}(b, 0)$ be the points on the graph and on x-axis respectively. Then
$\frac{a+b}{2}=5$ and $\frac{a^{2}+0}{2}=2$, hence $a= \pm 2$ and $a=8$ or 12 respectively.
Therefore, $\mathrm{A}(2,4), \mathrm{B}(8,0)$, or $\mathrm{A}(-2,4), \mathrm{B}(12,0)$.
(b) Let $\mathrm{C}\left(\mathrm{c}, \mathrm{c}^{2}\right)$ be on the graph .
$(c-5)^{2}+\left(c^{2}-2\right)^{2}=23^{2} \Leftrightarrow c=5$ or $c=-4.78$.
Therefore $\mathrm{C}(5,25)$ or $\mathrm{C}(-4.78,22.8)$

