

Comet Hartley 2 is seen in this spectacular image taken by the Deep Impact/EPOXI Medium-Resolution Instrument on November 4, 2010 as it flew by the nucleus at a distance of 700 kilometers. The pitted surface, free of large craters, shows a complex texture in regions where gas plumes are actively ejecting gas. The potatoshaped nucleus is 2 kilometers long and 0.4 kilometers wide at its narrowest location. (Credit: NASA/JPL-Caltech/UMD).

Problem 1 - Suppose that the shape of the comet nucleus can be approximated by the following function

$$
y(x)=-1.22 x^{4}+5.04 x^{3}-6.78 x^{2}+3.14 x+0.03
$$

rotated about the x-axis between $x=0$ and $x=2.0$, where all units are in kilometers.
A) Graph this function;
B) Perform the required volume integration by using the method of circular disks.
C) To two significant figures, what is the total volume of the nucleus in cubic meters?

Problem 2 - Assuming that the density of Comet Hartley-2 is $0.6 \mathrm{grams} / \mathrm{cm}^{3}$, what is your estimate for the mass of Comet Hartley-2 in megatons? (Note: $1000 \mathrm{~kg}=1$ metric ton)

Problem 1 - Answer:
A) Graph:

B)
$V=\int_{0}^{2} \pi y(x)^{2} d x \quad$ then $\quad V=\pi \int_{0}^{2}\left(-1.22 x^{4}+5.04 x^{3}-6.78 x^{2}+3.14 x+0.03\right)^{2} d x$
Expand integrand and collect terms (be careful!):
$V=\pi \int_{0}^{2}\left(1.49 x^{8}-12.30 x^{7}+41.94 x^{6}-76.00 x^{5}+77.55 x^{4}-42.28 x^{3}+9.46 x^{2}+0.18 x+0.0009\right) d x$

Integrate each term:

$V=\pi\left[0.17 x^{9}-1.54 x^{8}+5.99 x^{7}-12.67 x^{6}+15.51 x^{5}-10.57 x^{4}+3.15 x^{3}+0.09 x^{2}+0.0009 x+c\right]_{0}^{2}$
Now evaluate $V(x)$ at the two limits to get $V=V(2)-V(0)$: Note that the answer for V will be sensitive to the accuracy of the polynomial coefficients, here given to 4 decimal place accuracy:
$\mathrm{V}=(3.14)\left[0.1655(2)^{9}-1.5375(2)^{8}+5.9914(2)^{7}-12.6667(2)^{6}+15.51(2)^{5}-10.57(2)^{4}+3.1533(2)^{3}+\right.$ $\left.0.09(2)^{2}+0.0009(2)\right]$
$\mathrm{V}=3.14[0.157]$
So V = 0.49 cubic kilometers.
Problem 2 - Mass = Density \times Volume; First convert the volume to cubic centimeters from cubic kilometers: $V=0.49 \mathrm{~km}^{3} \times\left(10^{3} \text { meters } / 1 \mathrm{~km}\right)^{3} \times(100 \mathrm{~cm} / 1 \text { meter })^{3}=4.9 \times 10^{14} \mathrm{~cm}^{3}$. Then, Mass $=0.6 \mathrm{gm} / \mathrm{cm}^{3} \times 4.9 \times 10^{14} \mathrm{~cm}^{3}=2.9 \times 10^{14} \mathrm{gm}$. Convert grams to megatons: Mass $=2.9 \times 10^{14} \mathrm{gm} \times(1 \mathrm{~kg} / 1000 \mathrm{gm}) \times(1 \mathrm{ton} / 1000 \mathrm{~kg})=2.9 \times 10^{8}$ tons or 290 megatons.

