National PABSON SECONDARY EDUCATION EXAMINATION BOARD SEE Pre Board

Time:	3:00 hrs	Optional Mathematics	F.M. : 100					
Attempt all questions. Working must be shown. Group 'A' $[5 \times (1+1) = 10]$								
1. (a) If $f(x) =$	$2x - 3$, find $f^{-1}(x)$						
(b) If n is an $x^n - a^n$.	a even number, show that (x)	(x-a) is a factor of					
2. (a) Write the $-\infty$ to ∞	e geometrical form of the nun \mathfrak{i} .	abers lying between					
(b) What is t	the value of $(A^{-1})^{-1}$?						
3. (a	·	es $ax + by + c = 0$ and $px + qy$ at $aq = bp$.	+r = 0 are parallel,					
(b) If the int	ersecting plane is parallel to	o the base of cone.					

- (b) If the intersecting plane is parallel to the base of cone, what conic section does it form ?
- 4. (a) Write the formula of cos 2A in form of tan² A.
 (b) If sin θ/3 = 1/3 then find the value of sin θ.
- 5. (a) If $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$, what is the vector \overrightarrow{AB} ?
 - (b) If the radius of inversion circle is 8 cm, find the value of $OP \times OP'$.

Group 'B' $[13 \times 2 = 26]$

- 6. (a) What will be the points of intersection of the curve f(x) = x² 5 and f(x) = 4 ?
 (b) If f(4x 15) = 8x 27, find fof(2).
 - (c) Find the 8th terms of the series $2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots$
- 7. (a) Find the matrix $\begin{bmatrix} a \\ b \end{bmatrix}$, if $\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$.

- (b) Find the values of D_1 and D_2 in the equations 3x+5y = 11and 2x - 3y = 1.
- 8. (a) Find the obtuse angle between two lines having slopes 2 and -3.
 - (b) Find the center and radius of a circle represented by $x^2 + y^2 + 4x 6y 12 = 0$

9. (a) Prove that:
$$\frac{1 - \cos A}{1 + \cos A} = \tan^2 \frac{A}{2}$$
(b) Prove that:
$$\sin 75^\circ + \sin 15^\circ = \sqrt{\frac{3}{2}}$$

(c) Solve:
$$\sin^2 \theta - \sin \theta + \frac{1}{4} = 0 \ (0^\circ \le \theta \le 90^\circ)$$

- 10. (a) If $\vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, find the vector perpendicular to \vec{a} whose length along the X-axis is 6 unit.
 - (b) In $\triangle ABC, \overrightarrow{OA} = 4\vec{i} 5\vec{j}, \overrightarrow{OB} = 6\vec{i} 4\vec{j}$ and the position vector of centroid G is $\overrightarrow{OG} = 2\vec{i} \vec{j}$. Find \overrightarrow{OC} .
 - (c) In a grouped data, value of first quartile is 2 m and quartile deviation is m. Find the third quartile and coefficient of quartile deviation.

Group 'C'
$$[11 \times 4 = 44]$$

- 11. Solve: $x^3 9x^2 + 24x 20 = 0$
- 12. Maximize the objective function P = x + 2y subject to the conditions

$$2x + y \le 8, 2x + 3y \le 12, x \ge 0$$
 and $y \ge 0$

13. Examine the continuity or discontinuity of the function

$$f(x) = \begin{cases} 4x - 1 & \text{for } x < 1\\ 7x & \text{for } x \ge 1 \end{cases} \text{ at } x = 1$$

by calculating left hand limit, right hand limit and functional value.

14. Solve by matrix method:

$$4x - \frac{9}{y} + 11 = 0$$
 and $\frac{6}{y} - 3x = 8$

- 15. Find the single equation of a pair of lines passing through the origin and perpendicular to the pair of lines represented by $2x^2 xy 3y^2 = 0.$
- 16. If $A + B + C = 180^{\circ}$, Prove that:

 $\sin(B+C-A)+\sin(C+A-B)+\sin(A+B-C) = 4\sin A \cdot \sin B \cdot \sin C$

17. Solve: $[0^\circ \le \theta \le 360^\circ]$

$$\cos 3\theta + \cos \theta = 2\cos \theta$$

- 18. From a point at a ground in front of a tower the angle of elevations of the top and bottom of the flag staff 6 m high situated at the top of the tower are robserved to be 60° and 45° respectively. Find the height of the tower and the distance between the base of the tower and the point of observation.
- 19. Find the image quadrilateral when the unit square is transformed by the matrix $\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$.
- 20. Find the mean deviation from the median of the following data.

Marks obtained	0 - 10	10-20	20-30	30-40	40-50
No. of students	20	40	60	50	30

21. Find the standard deviation from given data:

Marks	20 - 40	40 - 60	60 - 80	60 - 100
Frequency	5	10	15	25

Group 'D'

 $[4 \times 5 = 20]$

22. If a, b and c are in AP and $x, y \ge a$ are in GP, prove that:

$$x^{b-c} \times y^{c-a} \times z^{a-b} = 1$$

- 23. Find the equations of the circle passing through the point (3,4) whose equations of two diameters are x+y = 14 and 2x-y = 4
- 24. Prove by vector method that the diagonals of a rhombus bisect each other at right angles.
- 25. Find the images of ΔMNP with vertices M(3,4), N(1,1) and P(4,1) under enlargement with centre at (1,-1) and scale factor -2 followed by the rotation about origin through negative quarter turn. Also show the object and the image on the same graph paper.
