weitere Übungsaufgaben zum Schwerpunkt

Nr.1

Gegeben sind die Punkte A(-1|-2) und B(5|-2) und die Gerade g mit der Gleichung y = 0.5x + 1. Punkte C_n , die auf der Geraden g liegen bilden zusammen mit den Punkten A und B Dreiecke AB C_n .

- a) Zeichne das Dreieck ABC_1 mit seinem Schwerpunkt für x = 3.
- b) Für welche x gibt es Dreiecke ABC_n?
- c) Berechne den Flächeninhalt aller Dreiecke allgemein in Abhängigkeit von x.
- d) Berechne die Gleichung des Trägergraphen der Mittelpunkte M₁ der Seiten [AC_n].
- e) Berechne die Gleichung des Trägergraphen der Schwerpunkte Sn.

Nr.2

Gegeben sind die Punkte A(-1|-2) und B(5|-2) und die Parabel p mit der Gleichung $y = x^2 - x + 1$. Punkte C_n , die auf der Parabel p liegen bilden zusammen mit den Punkten A und B Dreiecke AB C_n .

- a) Zeichne die Parabel p und das Dreieck ABC_1 mit seinem Schwerpunkt für x = 2.
- b) Berechne den Flächeninhalt aller Dreiecke allgemein in Abhängigkeit von x.
- c) Für welches x beträgt der Flächeninhalt 18 cm²?
- d) Für welches x wird der Flächeninhalt minimal?
- e) Berechne die Gleichung des Trägergraphen der Mittelpunkte M₁ der Seiten [AC_n].
- f) Berechne die Gleichung des Trägergraphen der Schwerpunkte S_n.

Nr.3

Gegeben sind die Geraden g mit der Gleichung y = -0,5x + 3 und h mit der Gleichung $y = \frac{1}{3}x - 4$. Auf der Gerade g liegen Punkte A_n. Auf der Gerade h liegen Punkte B_n. Die Punkte A_n und B_n haben dieselbe Abszisse x und bilden zusammen mit Punkten C_n Dreiecke A_nB_nC_n. Die Punkte M_n sind Mittelpunkte der Seiten [A_nB_n]. Weiter gilt: $\overrightarrow{AC} = \binom{3}{1}$

- a) Zeichne die Geraden das Dreieck $A_1B_1C_1$. für x = 3.
- b) Für welche x gibt es Dreiecke?
- c) Berechne den Flächeninhalt aller Dreiecke allgemein in Abhängigkeit von x.
- d) Berechne die Gleichung des Trägergraphen der Mittelpunkte F der Seiten [ACn].
- e) Berechne die Gleichung des Trägergraphen der Schwerpunkte Sn.

Nr.4

Gegeben sind die Parabel p mit der Gleichung $y = x^2 - 2x + 1$ und die Gerade h mit der Gleichung y = x + 2. Auf der Parabel p liegen Punkte B_n . Auf der Gerade h liegen Punkte A_n . Die Punkte A_n und B_n haben dieselbe Abszisse x. Die Strecken $[A_nB_n]$ sind Basen von gleichschenkligen Dreiecken $A_nB_nC_n$. Die Punkte M_n sind Mittelpunkte der Basen $[A_nB_n]$. Dabei sind die Höhen $[M_nC_n]$ immer 3 cm lang.

- a) Zeichne die Gerade h, die Parabel p und das Dreieck $A_1B_1C_1$. für x = 3.
- b) Für welche x gibt es Dreiecke A_nB_nC_n.?
- c) Berechne die Länge $\overline{A_nB_n}$ allgemein in Abhängigkeit von x.
- d) Berechne den Flächeninhalt aller Dreiecke allgemein in Abhängigkeit von x.
- e) Für welches x ist das Dreieck gleichschenklig-rechtwinklig?
- f) Für welches x ist das Dreieck gleichseitig?
- g) Berechne die Gleichung des Trägergraphen der Schwerpunkte S_n.