TRANSFORMATIONS

NANME:

Transformations: $f(x) \rightarrow f(x)=a f(n(x-b))+c \quad$ or $(x, y) \rightarrow\left(\frac{x}{n}+b, a y+c\right)$

- Transformations of a function is one of the following:
o Dilation (STRETCH) (from the x-axis or y-axis);
o Reflection (FLIP) (in x-axis or y-axis);
o Translation (SLIDE) (vertically and \backslash or horizontally);
o Rotation (we don't study these).
- The order to deal with the transformations is DRT (alphabetical)
- The Cartesian Plane is represented by the set $\boldsymbol{R}^{\mathbf{2}}$ of all ordered pairs of real numbers.

Dilations

- This is a stretch or contraction of the graph from the x-axis or the y-axis
- a causes a dilation of factor a from the x-axis $(x, y) \rightarrow(x, a y)$
- n causes a dilation of factor $\frac{1}{n}$ from the y-axis $(x, y) \rightarrow\left(\frac{x}{n}, y\right)$
- We describe the dilations like:
o The graph is dilated by a factor of a from the x-axis, or
o The graph is dilated by a factor of a parallel to the y-axis
o The graph is dilated by a factor of $\frac{1}{n}$ from the y-axis
Example: Sketch the graph of $f(x)=3 x^{2}$ by comparing it to $f(x)=x^{2}$
Here $a=$ \qquad
First sketch $\quad f(x)=x^{2}$
Then multiply each y value by \qquad .

The graph is \qquad by a factor of \qquad from the \qquad .

Example: Sketch $f(x)=(2 x)^{2}$
Here $n=$ \qquad
First sketch $\quad f(x)=x^{2}$
Then multiply each x value by \qquad .

The graph is \qquad by a factor of \qquad from the \qquad .

Could also be a dilation of factor 4 from the x-axis. Why?

Reflections

- There are three types of reflections:

0 In the x-axis, $y=-f(x),(x, y) \rightarrow(x,-y)$
0 In the y-axis, $y=f(-x),(x, y) \rightarrow(-x, y)$
0 In the line $y=x$, which we dealt with in Inverse functions.
Reflections in the \boldsymbol{x}-axis, $y=-f(x)$ or when $a<0$
Example: Sketch $f(x)=\frac{-x^{2}}{2}$

Here $a=$

The graph is in the \qquad and by a factor of from

Reflections in the \boldsymbol{y}-axis, $y=f(-x)$

Example: Sketch $f(x)=x^{3}+3, f(-x)$ and $-f(-x)$.

- $-f(-x)$ is a reflection in both $x \& y$ axes.

Reflections Worksheet \#1

KGtigcrions2 M 01.M2156Gt \#T

For each of the following graphs of $y=f(x)$, sketch:
(i) $y=-f(x)$
(ii) $y=f(-x)$
(iii) $y=-f(-x)$
(a)

(i)

(ii)

(iii)

(b)

(i)

(ii)

(iii)

(c)

(i)

(ii)

(iii)

Reflections Worksheet \#2
 K6tjGcIIOM2 M OL.K2JG6t \#5

For each of the following graphs of $y=f(x)$, sketch:
(i) $y=-f(x)$
(ii) $y=f(-x)$
(iii) $y=-f(-x)$
(d)

(i)

(ii)

(iii)

(e)
(i)

(ii)

(iii)

(f)

(i)

(ii)

(iii)

Translations

- There are two types of translations:

0 Along the direction of the x-axis : $f(x)=f(x-b) ;(x, y) \rightarrow(x+b, y)$
0 Along the direction of the y-axis: $f(x)=f(x)+c .(x, y) \rightarrow(x, y+c)$

1. Along the direction of the \boldsymbol{x}-axis : $f(x)=f(x-b)$

- Sketch the graph of $f(x)=(x+4)^{3}$.
- Translation of 4 units in the negative direction of the x-axis.

- Sketch the graph of $f(x)=(x-2)^{2}$
- \qquad of \qquad units in the \qquad direction of the _-axis.

2. Along the direction of the \boldsymbol{y}-axis: $f(x)=f(x)+c$

- Sketch the graph of $f(x)=x^{2}+4$
- \qquad of \qquad units in the \qquad direction of the _-axis.

"Repeated Factor Squared"

- Consider the function $f(x)=(x+3)(x-2)^{2}$
- The X - intercepts are \qquad and \qquad
- $(2,0)$ is also a \qquad
- "A repeated factor squared is both an \qquad and a \qquad "

"Repeated Factor Cubed"

- Consider the function $f(x)=(x+1)^{3}(x-4)$
- The X - intercepts are \qquad and \qquad .
- $(-1,0)$ is also a \qquad .
- "A repeated factor cubed is both an \qquad and a \qquad
- Ex4A Q 1, 3; Ex 3A Q 7 ab; Ex 3B Q 11a;
- Ex 3C Q 1; Ex 3D Q 1a; Ex 3E Q 2 abe, 3 bc

Transformations Summary $f(x) \rightarrow a f(n(x-b))+c \quad$ or $\quad(x, y) \rightarrow\left(\frac{x}{n}+b, a y+c\right)$
Example 1: State the transformations from $f(x)$ to $y=-2 f(3(x+4))-1$.

Example 2: Describe the transformations undergone by $y=\log _{e} x$ to $y=1-3 \log _{e}(2 x-8)$.

Example 3: Write the equation of the rule when $y=x^{2}$ is transformed by:

- a translation of 1 unit in the positive direction of the x-axis and 2 units in the positive direction of the y - axis, followed by,
- a dilation of factor of 2 from the y-axis, followed by,
- a reflection in the x-axis.

Exercise on Sequence of Transformations

1. State the sequence of transformations that each of the following functions have undergone from $y=f(x)$.
(a) $y=3 f(-2(x+3))+4$.
(b) $y=0.5 f(3(x-2))+1$
(c) $y=2 f(-0.4(x+3))-0.2$
(d) $y=2-3 f(2 x+1)$
2. Describe the transformations undergone by each of the following functions to produce the second function.
(a) $y=\log _{e} x$ to $y=4 \log _{e} 2(x+3)-5$
(b) $y=\sqrt{x}$ to $y=2 \sqrt{3 x+4}+5$
(c) $y=\cos x$ to $y=-3 \cos \left(2 x+\frac{\pi}{4}\right)+1$
(d) $y=x^{6}$ to $y=3(2 x+5)^{6}-2$
(e) $y=\sin x$ to $y=2 \sin \pi(3 x-4)$

- Ex4E Q 1,2, 3, 4; Ex 3A Q 7 d; Ex 3B Q 4; Ex 3C Q 2b, 4a; Ex 3D Q 4d; Ex 3E Q 1a; Ex4F Q 1, 2, 3, 4, 5, 6

Determining a Rule for a Function from a Graph

- Worksheet - Matching Graphs to their rules

Match the following graphs with the correct equation:
(a)

(b)

(c)

(d)

(e)

(f)

A: $y=x^{3}(1-x)$
B: $y=x\left(1-x^{2}\right)$
D: $y=x^{2}(1-x)$
E: $y=x\left(x^{2}-1\right)$
C: $y=x^{2}\left(x^{2}-1\right)$
F: $y=x^{2}\left(1-x^{2}\right)$

- Example: Find the rule for:

- Example: Find the rule for:

- Graphical Calculator can be used for this example.
o Insert Lists \& Spreadsheet
o X-values - List1
o Y-values - List 2
o Regression - Menu - Statistics - Calculations
- Example: Find the rule for: $(1,-1)$ on curve.

- Example: Find the rule for:

- Ex4A Q 8, 9; Ex4B Q 1, 2, 3, 4, 7, 8 , 9; Ex4G Q 1, 3, 4, 5, 6, 7, 8; Ex3G 3, 4, 5, 6, 7ab, 8, 9

Transformations of $f(x)=x^{p} ; p=-1,-3, \ldots$

- $\frac{1}{x^{p}} \rightarrow \frac{a}{(n(x-b))^{p}}+c$ or $a f(n(x-b))+c$
- Examples: Sketch the graph of:
- (i) $f(x)=\frac{2}{x}$
(ii) $f(x)=\frac{1}{2 x^{3}}$
(iii) $f(x)=\frac{4}{x-2}$
(iv) $f(x)=\frac{4}{2-x}$ (v) first show that $f(x)=\frac{-3 x-3}{x+2}$ is equal to $f(x)=\frac{3}{x+2}-3$
(i)
(ii)

(iii)

(iv)

(v) $f(x)=\frac{-3 x-3}{x+2}=$

- Ex3A Q 2, 3 aefghk, 4, 5 be, 8b; Ex3B Q 1, 5 ab, 7 Ex3D Q 4 c; Ex3E Q 4af; Ex3F 1 abef, 2 dgij, 3, 4, 5 ab

Hint Ex 3F Q4
$y=\frac{4 x+5}{2 x+3}=\frac{2(2 x+3)-1}{2 x+3}=2-\frac{1}{2 x+3}$
Or synthetic division
$2 x+3=0$
$x=-\frac{3}{2} \quad$ first (divide all terms by 2)
$y=\frac{4 x+5}{2 x+3}=\frac{2 x+\frac{5}{2}}{x+\frac{3}{2}}$

Transformations of $f(x)=x^{p} ; p=-2,-4, \ldots$

- $\frac{1}{x^{p}} \rightarrow \frac{a}{(n(x-b))^{p}}+c$
- Examples: Sketch the graph of:
- (i) $f(x)=\frac{2}{x^{2}}$ (ii) $f(x)=\frac{1}{2 x^{4}}$ (iii) $f(x)=\frac{4}{(x-2)^{2}}$ (iv) $f(x)=\frac{-3}{(x+2)^{2}}$ (v) $f(x)=\frac{3}{(x+2)^{2}}-3$
(i)

(iii)

(iv)

(v) dilation of factor \qquad , a translation of \qquad units down (\qquad direction of the y-axis) and a translation of \qquad units to the left (\qquad direction of the x-axis):

- Ex3A Q 3 bcij, 5cd, 7c, 8a; Ex3B Q 2, 5d, 6, 10 ae, 11 bde; Ex3C Q4 cd; Ex3D Q 1c, 4 efg, 6; Ex3E Q 1 b, 2 cd, 3a, 4bc; Ex 3F 1 cdg, 2h, 5c

Transformations of functions of the form $f(x)=x^{\frac{p}{q}}$

- $x^{\frac{p}{q}} \rightarrow a(n(x-b))^{\frac{p}{q}}+c \quad$ OR $\quad x^{\frac{p}{q}} \rightarrow a \sqrt[q]{(n(x-b))^{p}}+c$
- Ex3AQ 6, 7e, 8c; Ex3B Q 3, 5c, 8, 9, 10 bcd, 11 cfg; Ex 3C Q 2a, 3,4 befg; Ex3D Q 1b, 4b, 5, 7; Ex3E Q 1, 3 de, 4de ; Ex3F Q 2 abcef, 5 def

Determining rules for $f(x)=x^{n}$

Example: It is known that the points $(1,5)$ and $(4,2)$ lie on a curve with the equation $y=\frac{a}{x}+b$. Find the values of a and b.

Solution:

Example 2: It is known that the points $(2,1)$ and $(10,6)$ lie on a curve with equation $y=a \sqrt{x-1}+b$. Find the equation.

Solution:

- Ex3H Q 1, 2, 3, 4, 5, 6, 7, 8

Transformations using Matrices:

- $\left(x^{\prime}, y^{\prime}\right)$ is called the image of (x, y).
- the transformations are written as follows:

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+[] \longleftarrow \begin{array}{l}
2 \times 1 \text { matrix } \\
\text { translations }
\end{array}} \\
\\
\begin{array}{l}
2 \times 2 \text { matrix } \\
\text { dilations } / \text { reflections }
\end{array}
\end{gathered}
$$

- You can have more than one dilation/reflection matrix.
- Remember: multiply rows by columns, add/subtract elements in the same position.
- The transformation matrices are:

Reflection in the x-axis	$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$	$(x, y) \rightarrow(x,-y)$ $f(x) \rightarrow-f(x)$
Reflection in the y-axis	$\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$	$(x, y) \rightarrow(-x, y)$ $f(x) \rightarrow f(-x)$
Reflection in the line $y=x$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$(x, y) \rightarrow(y, x)$ $f(x) \rightarrow f(y)$
Dilation of factor a from the x-axis	$\left[\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right]$	$(x, y) \rightarrow(x, a y)$ $f(x) \rightarrow a f(x)$
Dilation of factor k from the y-axis (note $n=1 / k)$	$\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]$	$(x, y) \rightarrow(k x, y)$ $f(x) \rightarrow f\left(\frac{x}{k}\right)$
Translation Matrix (add)	$\left[\begin{array}{l}b \\ c\end{array}\right]$	$(x, y) \rightarrow(x+b, y+c)$ $f(x) \rightarrow f(x-b)+c$

Example 1: find the image of the point $(2,3)$ under:
a a reflection in the x-axis
b a dilation of factor 4 from the y-axis

Example 2: Consider a linear transformation such that $(1,0) \rightarrow(3,-1)$ and $(0,1) \rightarrow(-2,4)$. Find the image of $(-3,5)$

Example 3: A transformation is defined by the matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. Find the equation of the graph of $y=\sin (x)+x$, under this transformation.

Solution:

1. Write the dilations in terms of matrices	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}\square\end{array}\right]$
2. Multiply matrices	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}2 \times x+0 \times y \\ 0 \times x+3 \times y\end{array}\right]=\left[\begin{array}{l}y^{\prime}= \\ x^{\prime}= \\ x= \\ y=\end{array}\right]$
3. Determine the result in terms of x^{\prime} and $y^{\prime} \&$ rearrange to make x and y the subject of each equation.	
4. Sub each into the original equation.	
5. Rearrange to make y^{\prime} the subject	
6. Then drop the '	

Example 4: A transformation is described by the matrix equation $\mathbf{A}(\mathbf{X}+\mathbf{B})=\mathbf{X}^{\prime}$, where

$$
A=\left[\begin{array}{cc}
0 & -3 \\
2 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Find the image of the straight line with equation $y=2 x+5$ under this transformation.

Transformations of standard graphs			
$f(x)$	Parent Graph	af $(n(x-b))+c$	Example
x		$a x+c$	
x^{2}		$a(n(x-b))^{2}+c$	
$a(x-m)(x-n)$		$a x^{2}+b x+c$	
x^{3}		$a(n(x-b))^{3}+c$	
x^{4}		$a(n(x-b))^{4}+c$	
$\frac{1}{x}$ or x^{-1}		$\frac{a}{n(x-b)}+c$	

$\frac{1}{x^{2}}$ or x^{-2}		$\frac{a}{(n(x-b))^{2}}+c$	
$x^{\frac{1}{2}} \text { or } \sqrt{x}$		$a \sqrt{n(x-b)}+c$	
$x^{\frac{p}{q}} \text { or } \sqrt[q]{x^{p}}$	See below	$a \sqrt[q]{n(x-b)^{p}}+c$	See below
e^{x}		$a e^{n(x-b)}+c$	
m^{x}		$a m^{(n(x-b))}+c$	
$\log _{e} x$		$a \log _{e}(n(x-b))+c$	

$\log _{10} x$		$a \log _{10}(n(x-b))+c$	
$\sin x$		$a \sin (n(x-b))+c$	
$\cos x$		$a \cos (n(x-b))+c$	
$\tan x$		$a \tan (n(x-b))+c$	

$$
y=x^{\frac{p}{q}}
$$

VCAA EXAM QUESTIONS for TRANSFORMATIONS
 2008

Question 8
The graph of the function $f: D \rightarrow R, f(x)=\frac{x-3}{2-x}$, where D is the maximal domain has asymptotes
A. $x=3, \quad y=2$
B. $x=-2, \quad y=1$
C. $x=1, \quad y=-1$
D. $x=2, \quad y=-1$
E. $x=2, \quad y=1$

Question 2

On the axes below, sketch the graph of $f: R \backslash\{-1\} \rightarrow R, \quad f(x)=2-\frac{4}{x+1}$
Label all axis intercepts. Label each asymptote with its equation

2009
Question 2
At the point $(1,1)$ on the graph of the function with rule $y=(x-1)^{3}+1$
A. there is a local maximum
B. there is a local minimum
C. there is a stationary point of inflection.
D. the gradient is not defined.
E. there is a point of discontinuity.

Question 21

A cubic function has the rule $y=f(x)$. The graph of the derivative function f^{\prime} crosses the x-axis at $(2,0)$ and $(-3,0)$. The maximum value of the derivative function is 10 .

The value of x for which the graph of $y=f(x)$ has a local maximum is
A. -2
B. 2
C. -3
D. 3
E. $-\frac{1}{2}$

Question 3

a. Consider the function $f: R \rightarrow R, f(x)=4 x^{3}+5 x-9$.
i. Find $f^{\prime}(x)$
\qquad
\qquad
ii. Explain why $f^{\prime}(x) \geq 5$ for all x.
\qquad
\qquad

$$
1+1=2 \text { marks }
$$

b. The cubic function p is defined by $p: R \rightarrow R, p(x)=a x^{3}+b x^{2}+c x+k$, where a, b, c and k are real numbers.
i. If p has m stationary points, what possible values can m have?
i. If p has an inverse function, what possible values can m have?
\qquad
\qquad
c. The cubic function q is defined by $q: R \rightarrow R, q(x)=3-2 x^{3}$.
i. Write down an expression for $q^{-1}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Determine the coordinates of the point(s) of intersection of the graphs of $y=q(x)$ and $y=q^{-1}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. The cubic function g is defined by $g: R \rightarrow R, g(x)=x^{3}+2 x^{2}+c x+k$, where c and k are real numbers.
i. If g has exactly one stationary point, find the value of c.
\qquad
\qquad
\qquad
\qquad
\qquad
ii. If this stationary point occurs at a point of intersection of $y=g(x)$ and $y=g^{-1}(x)$, find the value of k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2012

Question 8
The function $f: R \rightarrow R, f(x)=a x^{3}+b x^{2}+c x$, where a is a negative real number and b and c are real numbers. For the real numbers $p<m<0<n<q$, we have $f(p)=f(q)=0$ and $f^{\prime}(m)=f^{\prime}(n)=0$.
The gradient of the graph of $y=f(x)$ is negative for
A. $(-\infty, m) \cup(n, \infty)$
B. (m, n)
C. $(p, 0) \cup(q, \infty)$
D. $(p, m) \cup(0, q)$
E. (p, q)

Question 16

The graph of a cubic function f has a local maximum at $(a,-3)$ and a local minimum at $(b,-8)$.
The values of c, such that the equation $f(x)+c=0$ has exactly one solution, are
A. $3<c<8$
B. $c>-3$ or $c<-8$
C. $-8<c<-3$
D. $c<3$ or $c>8$
E. $c<-8$

2014

Question 1
The point $P(4,-3)$ lies on the graph of a function f. The graph of f is translated four units vertically up and then reflected in the y-axis.
The coordinates of the final image of P are
A. $(-4,1)$
B. $(-4,3)$
C. $(0,-3)$
D. $(4,-6)$
E. $(-4,-1)$

Question 12

The transformation $T: R^{2} \rightarrow R^{2}$ with rule

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

maps the line with equation $x-2 y=3$ onto the line with equation
A. $x+y=0$
B. $x+4 y=0$
C. $-x-y=4$
D. $x+4 y=-6$
E. $x-2 y=1$

Question 5 (13 marks)
Let $f: R \rightarrow R, f(x)=(x-3)(x-1)\left(x^{2}+3\right)$ and $g: R \rightarrow R, g(x)=x^{4}-8 x$.
a. Express $x^{4}-8 x$ in the form $x(x-a)\left((x+b)^{2}+c\right) . \quad 2$ marks
\qquad
\qquad
\qquad
\qquad
b. Describe the translation that maps the graph of $y=f(x)$ onto the graph of $y=g(x) . \quad 1$ mark
\qquad
\qquad
\qquad
\qquad
c. Find the values of d such that the graph of $y=f(x+d)$ has
i. one positive x-axis intercept

1 mark
\qquad
\qquad
\qquad
ii. two positive x-axis intercepts.
\qquad
\qquad
\qquad
d. Find the value of n for which the equation $g(x)=n$ has one solution.
\qquad
\qquad

f. i. Find the equation of the tangent to the graph of $y=g(x)$ at the point $(p, g(p))$. 1 mark
\qquad
\qquad
ii. Find the equations of the tangents to the graph of $y=g(x)$ that pass through the point
with coordinates $\left(\frac{3}{2},-12\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3

The rule for a function with the graph above could be
A. $y=-2(x+b)(x-c)^{2}(x-d)$
B. $y=2(x+b)(x-c)^{2}(x-d)$
C. $y=-2(x-b)(x-c)^{2}(x-d)$
D. $y=2(x-b)(x-c)(x-d)$
E. $y=-2(x-b)(x+c)^{2}(x+d)$

Question 11
The transformation that maps the graph of $y=\sqrt{8 x^{3}+1}$ onto the graph of $y=\sqrt{x^{3}+1}$ is a
A. dilation by a factor of 2 from the y-axis.
B. dilation by a factor of 2 from the x-axis.
C. dilation by a factor of $\frac{1}{2}$ from the x-axis.
D. dilation by a factor of 8 from the y-axis.
E. dilation by a factor of $\frac{1}{2}$ from the y-axis.

Question 17

A graph with rule $f(x)=x^{3}-3 x^{2}+c$, where c is a real number, has three distinct x-intercepts.
The set of all possible values of c is
A. R
B. R^{+}
C. $\{0,4\}$
D. $(0,4)$
E. $(-\infty, 4)$

Question 20

If $f(x-1)=x^{2}-2 x+3$, then $f(x)$ is equal to
A. $x^{2}-2$
B. $x^{2}+2$
C. $x^{2}-2 x+2$
D. $x^{2}-2 x+4$
E. $x^{2}-4 x+6$

