

Transformations:
$$f(x) \to f(x) = af(n(x-b)) + c$$
 or $(x, y) \to \left(\frac{x}{n} + b, ay + c\right)$

- Transformations of a function is one of the following:
 - Dilation (STRETCH) (from the *x*-axis or *y*-axis);
 - Reflection (FLIP) (in x-axis or y-axis);
 - Translation (SLIDE) (vertically and/or horizontally);
 - Rotation (we don't study these).
- The order to deal with the transformations is **DRT** (alphabetical) •
- The Cartesian Plane is represented by the set R^2 of all ordered pairs of real numbers.

Dilations

Here a =

- This is a stretch or contraction of the graph from the x-axis or the y-axis •
- *a* causes a dilation of factor *a* from the x-axis $(x, y) \rightarrow (x, ay)$ •
- *n* causes a dilation of factor $\frac{1}{n}$ from the y-axis $(x, y) \rightarrow (\frac{x}{n}, y)$
- We describe the dilations like:
 - The graph is dilated by a factor of *a* from the *x*-axis, or
 - The graph is dilated by a factor of *a* parallel to the *y*-axis
 - The graph is dilated by a factor of $\frac{1}{2}$ from the y-axis

Example: Sketch the graph of $f(x) = 3x^2$ by comparing it to $f(x) = x^2$

First sketch $f(x) = x^2$ Then multiply each *y* value by _____. -10 -5 -5 The graph is by a factor of from the _____. -10-

5

10

Example: Sketch $f(x) = (2x)^2$ Here n =First sketch $f(x) = x^2$ Then multiply each *x* value by _____ . -10 5 10 -5 The graph is _____ by a factor of _____ from the _____. -5 -10-Could also be a dilation of factor 4 from the x-axis. Why?

Reflections

- There are three types of reflections:
 - In the x-axis, y = -f(x), $(x, y) \rightarrow (x, -y)$
 - In the y-axis, $y = f(-x), (x, y) \rightarrow (-x, y)$
 - In the line y = x, which we dealt with in **Inverse functions**.

• -f(-x) is a reflection in both x & y axes.

> X

Translations

- There are two types of translations:
 - Along the direction of the x-axis : f(x) = f(x-b); $(x, y) \rightarrow (x+b, y)$
 - Along the direction of the y-axis: $f(x) = f(x) + c \cdot (x, y) \rightarrow (x, y + c)$

1. Along the direction of the *x*-axis : f(x) = f(x-b)

- Sketch the graph of $f(x) = (x+4)^3$.
- Translation of 4 units in the negative direction of the *x*-axis.
- Sketch the graph of $f(x) = (x-2)^2$
- _____ of ___ units in the _____ direction of the _-axis.

- 2. Along the direction of the *y*-axis: f(x) = f(x) + c
- Sketch the graph of $f(x) = x^2 + 4$
- _____ of __ units in the _____ direction of the _-axis.

"Repeated Factor Squared"

- Consider the function $f(x) = (x+3)(x-2)^2$
- The *X* intercepts are ____ and ____
- (2, 0) is also a _____
- "A repeated factor squared is both an _____ and a _____

"

"Repeated Factor Cubed"

- Consider the function $f(x) = (x+1)^3(x-4)$
- The *X* intercepts are _____ and _____.
- (-1, 0) is also a _____.
 "A repeated factor cubed is both an _____and a _____.
 - **Ex4A** Q 1, 3; **Ex 3A** Q 7 ab; **Ex 3B** Q 11a;
 - Ex 3C Q 1; Ex 3D Q 1a; Ex 3E Q 2 abe, 3 bc

Transformations Summary $f(x) \rightarrow af(n(x-b)) + c$ or $(x, y) \rightarrow \left(\frac{x}{n} + b, ay + c\right)$

Example 1: State the transformations from f(x) to y = -2f(3(x+4)) - 1.

Example 2: Describe the transformations undergone by $y = \log_e x$ to $y = 1 - 3\log_e(2x - 8)$.

Example 3: Write the equation of the rule when $y = x^2$ is transformed by:

- a translation of 1 unit in the positive direction of the x axis and 2 units in the positive • direction of the y – axis, followed by,
- a dilation of factor of 2 from the y axis, followed by, •
- a reflection in the x axis.

Exercise on Sequence of Transformations

- 1. State the sequence of transformations that each of the following functions have undergone from y = f(x).
- (a) y = 3f(-2(x+3)) + 4. **(b)** y = 0.5 f(3(x-2)) + 1(c) y = 2f(-0.4(x+3)) - 0.2(d) y = 2 - 3f(2x + 1)
- 2. Describe the transformations undergone by each of the following functions to produce the second function.

(a)
$$y = \log_e x$$
 to $y = 4\log_e 2(x+3) - 5$
(b) $y = \sqrt{x}$ to $y = 2\sqrt{3x+4} + 5$
(c) $y = \cos x$ to $y = -3\cos\left(2x + \frac{\pi}{4}\right) + 1$
(d) $y = x^6$ to $y = 3(2x+5)^6 - 2$

(e)
$$y = \sin x$$
 to $y = 2\sin \pi (3x - 4)$

Ex4E Q 1,2, 3, 4; **Ex 3A** Q 7 d; **Ex 3B** Q 4; **Ex 3C** Q 2b, 4a; **Ex 3D** Q 4d; **Ex 3E** Q 1a; **Ex4F**Q 1, 2, 3, 4, 5, 6

Determining a Rule for a Function from a Graph

• Worksheet – Matching Graphs to their rules Match the following graphs with the correct equation:

2

1

×

B: $y = x(1 - x^2)$

E: $y = x(x^2 - 1)$

2

• **Example:** Find the rule for:

-1

(e)

-2

A: $y = x^3(1-x)$

D: $y = x^2(1-x)$

• **Example:** Find the rule for:

- Graphical Calculator can be used for this example.
 - o Insert Lists & Spreadsheet
 - o X-values List1
 - \circ *Y-values List2*
 - Regression Menu Statistics Calculations
- **Example:** Find the rule for: (1, -1) on curve.

• **Example:** Find the rule for:

• Ex4A Q 8, 9; Ex4B Q 1, 2, 3, 4, 7, 8, 9; Ex4G Q 1, 3, 4, 5, 6, 7, 8; Ex3G 3, 4, 5, 6, 7ab, 8, 9

Transformations of $f(x) = x^p$; p = -1, -3, ...

- $\frac{1}{x^p} \rightarrow \frac{a}{(n(x-b))^p} + c$ or af(n(x-b)) + c
- **Examples:** Sketch the graph of:

-5-

-10+

• Ex3A Q 2, 3 aefghk, 4, 5 be, 8b; Ex3B Q 1, 5 ab, 7 Ex3D Q 4 c; Ex3E Q 4af; Ex3F 1 abef, 2 dgij, 3, 4, 5 ab

Hint Ex 3F Q4 $y = \frac{4x+5}{2x+3} = \frac{2(2x+3)-1}{2x+3} = 2 - \frac{1}{2x+3}$ Or synthetic division 2x+3=0 $x = -\frac{3}{2}$ first (divide all terms by 2) $y = \frac{4x+5}{2x+3} = \frac{2x+\frac{5}{2}}{x+\frac{3}{2}}$ **Transformations of** $f(x) = x^p$; p = -2, -4, ...

(v) dilation of factor ___, a translation of ____ units down (_____ direction of the y-axis) and a translation of ____ units to the left (______ direction of the x-axis):

• Ex3A Q 3 bcij, 5cd, 7c, 8a; Ex3B Q 2, 5d, 6, 10 ae, 11 bde; Ex3C Q4 cd; Ex3D Q 1c, 4 efg, 6; Ex3E Q 1 b, 2 cd, 3a, 4bc; Ex 3F 1 cdg, 2h, 5c

Transformations of functions of the form $f(x) = x^{\frac{p}{q}}$

- $x^{\frac{p}{q}} \to a(n(x-b))^{\frac{p}{q}} + c$ OR $x^{\frac{p}{q}} \to a\sqrt[q]{(n(x-b))^{p}} + c$
- Ex3AQ 6, 7e, 8c; Ex3B Q 3, 5c, 8, 9, 10 bcd, 11 cfg; Ex 3C Q 2a, 3, 4 befg; Ex3D Q 1b, 4b, 5, 7; Ex3E Q 1, 3 de, 4de ; Ex3F Q 2 abcef, 5 def

Determining rules for $f(x) = x^n$

Example: It is known that the points (1, 5) and (4, 2) lie on a curve with the equation $y = \frac{a}{x} + b$. Find the values of *a* and *b*.

Solution:

Example 2: It is known that the points (2, 1) and (10, 6) lie on a curve with equation $y = a\sqrt{x-1} + b$. Find the equation.

Solution:

Transformations using Matrices:

- (x', y') is called the image of (x, y).
- the transformations are written as follows:

- You can have more than one dilation/reflection matrix.
- Remember: multiply rows by columns, add/subtract elements in the same position.
- The transformation matrices are:

Reflection in the <i>x</i> -axis	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ (x, y) \rightarrow (x, -y) f(x) \rightarrow -f(x) $
Reflection in the <i>y</i> -axis	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$ (x, y) \to (-x, y) f(x) \to f(-x) $
Reflection in the line $y=x$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ (x, y) \to (y, x) f(x) \to f(y) $
Dilation of factor <i>a</i> from the <i>x</i> -axis	$\begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$	$ (x, y) \to (x, ay) f(x) \to af(x) $
Dilation of factor k from the y-axis (note $n = 1/k$)	$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$	$ (x, y) \to (kx, y) $ $ f(x) \to f\left(\frac{x}{k}\right) $
Translation Matrix (add)	$\begin{bmatrix} b \\ c \end{bmatrix}$	$ (x, y) \rightarrow (x+b, y+c) f(x) \rightarrow f(x-b)+c $

Example 1: find the image of the point (2, 3) under:

a a reflection in the *x*-axis **b** a dilation of factor 4 from the *y*-axis

Example 2: Consider a linear transformation such that $(1, 0) \rightarrow (3, -1)$ and $(0, 1) \rightarrow (-2, 4)$. Find the image of (-3, 5)

Example 3: A transformation is defined by the matrix $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Find the equation of the graph of

 $y = \sin(x) + x$, under this transformation.

Solution:

~ • • •		
1.	Write the dilations in terms of matrices	$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix} \begin{bmatrix} \\ & \end{bmatrix}$
2.	Multiply matrices	$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} 2 \times x + 0 \times y\\ 0 \times x + 3 \times y \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$
3.	Determine the result in terms of x' and y' and y' rearrange to make x and y the subject of each equation.	$\begin{array}{ll} x'= & y'= \\ x= & y= \end{array}$
4.	Sub each into the original equation.	
5.	Rearrange to make y' the subject	
6.	Then drop the '	

Example 4: A transformation is described by the matrix equation A(X + B) = X', where

$$A = \begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Find the image of the straight line with equation y = 2x + 5 under this transformation.

• **Ex3I** Q 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 15, 16

	p	q	Domain	Example graph	Equations
	r	1			
$\frac{p > q}{\frac{p}{q} > 1}$	<i>p</i> odd	<i>q</i> odd	R	F4+ F2+ F3 Tools Zoom Trace Restant Math Draw Fen ::	$y = x^3$ $y = x^{\frac{5}{3}}$
	p odd	<i>q</i> even	$x \ge 0$	MAIN RAD AUTO FUNC F3+ F2+ F3 F4 Tools 200m Trace Restran Mathematics MAIN RAD AUTO FUNC	$y = x^{\frac{3}{2}}$
	<i>p</i> even	<i>q</i> odd	R	Tools Zoom Trace Resr and Math Draw Fen :	$y = x^{2}$ $y = x^{\frac{4}{3}}$
$\frac{p < q}{\frac{p}{q} < 1}$	p odd	<i>q</i> odd	R	F1+ F2+ F3 Too1s zoom Trace Regraph Math Draw Pen :: MAIN BAD AUTO FUNC	$y = x^{\frac{1}{3}}$ $y = x^{\frac{3}{5}}$
	<i>p</i> odd	<i>q</i> even	$x \ge 0$	Ta+ F2+ F3 Tools Zoom Trace Restrant Math Draw Fen :: Main Bap Auto Func	$y = x^{\frac{1}{2}}$ $y = x^{\frac{3}{4}}$
	<i>p</i> even	<i>q</i> odd	R	Tools Zoom Trace Restrant Math Draw Fen :: Main Bab Auto Func	$y = x^{\frac{2}{3}}$

VCAA EXAM QUESTIONS for TRANSFORMATIONS 2008

Question 8 The graph of the function $f: D \to R$, $f(x) = \frac{x-3}{2-x}$, where D is the maximal domain has asymptotes A. x = 3, y = 2 B. x = -2, y = 1 C. x = 1, y = -1 D. x = 2, y = -1 E. x = 2, y = 1 On the axes below, sketch the graph of $f: R \setminus \{-1\} \to R$, $f(x) = 2 - \frac{4}{x+1}$. Label all axis intercepts. Label each asymptote with its equation. y O

2009

Question 2 At the point (1, 1) on the graph of the function with rule $y = (x - 1)^3 + 1$ A. there is a local maximum. B. there is a local minimum.	
C. there is a stationary point of inflection.	
D. the gradient is not defined.E. there is a point of discontinuity.	ß
Question 21 A cubic function has the rule $y = f(x)$. The graph of the derivative function f' crosses the x-axis (-3, 0). The maximum value of the derivative function is 10. The value of x for which the graph of $y = f(x)$ has a local maximum is A. -2 B. 2 C. -3 D. 3 E. $-\frac{1}{2}$	is at (2, 0) and

2011

201	1	
Q	uestio	13
a.	Cor	sider the function $f: \mathbb{R} \to \mathbb{R}, f(x) = 4x^3 + 5x - 9$.
		Find $f'(x)$
		Explain why $f'(x) \ge 5$ for all x .
	п.	Explain why $f(x) \ge 5$ for an x .
		1+1=2 marks
b.		cubic function <i>p</i> is defined by $p: R \to R, p(x) = ax^3 + bx^2 + cx + k$, where <i>a</i> , <i>b</i> , <i>c</i> and <i>k</i> are real numbers.
	i.	If p has m stationary points, what possible values can m have?
	ii.	If p has an inverse function, what possible values can m have?
		• • •
		1 + 1 = 2 marks
	TTI	
c.		cubic function q is defined by $q: \mathbb{R} \to \mathbb{R}, q(x) = 3 - 2x^3$.
	i.	Write down an expression for $q^{-1}(x)$.
	ii.	Determine the coordinates of the point(s) of intersection of the graphs of $y = q(x)$ and $y = q^{-1}(x)$.
		2 + 2 = 4 marks
		$2 \cdot 2 = \pm \operatorname{Ind} \operatorname{KS}$

d. The	cubic function g is defined by g: $R \rightarrow R$, $g(x) = x^3 + 2x^2 + cx + k$, where c and k are real numbers.
i.	If g has exactly one stationary point, find the value of c .
ii.	If this stationary point occurs at a point of intersection of $y = g(x)$ and $y = g^{-1}(x)$, find the value of k.
	3+3=6 marks
	Total 14 marks
2012	
2012	
Questi	
	nction $f: R \to R, f(x) = ax^3 + bx^2 + cx$, where a is a negative real number and b and c are real numbers.
For the	e real numbers $p \le m \le 0 \le n \le q$, we have $f(p) = f(q) = 0$ and $f'(m) = f'(n) = 0$.
The gr	adient of the graph of $y = f(x)$ is negative for
A. (-	$-\infty, m) \cup (n, \infty)$
B. (<i>1</i>	n, n)
C. ()	$(p,0)\cup(q,\infty)$
D. ()	$(p,m) \cup (0,q)$
E. ()	(p,q)
Quest	ion 16
	raph of a cubic function f has a local maximum at $(a, -3)$ and a local minimum at $(b, -8)$.
The va	alues of c, such that the equation $f(x) + c = 0$ has exactly one solution, are
A. 3	< c < 8
B. <i>c</i>	> -3 or c < -8
C	8 < c < -3
D. <i>c</i>	< 3 or <i>c</i> > 8
E . <i>c</i>	

2014

Question 1

The point P(4, -3) lies on the graph of a function f. The graph of f is translated four units vertically up and then reflected in the *y*-axis. The coordinates of the final image of P are **A.** (-4, 1)**B.** (-4, 3)

- **C.** (0, −3)
- **D.** (4, -6)
- **E.** (−4, −1)

Question 12	
The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with rule	
$T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0\\ 0 & 2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 1\\ -2 \end{bmatrix}$	
maps the line with equation $x - 2y = 3$ onto the line with equation	
A. $x + y = 0$	
$\mathbf{B.} x + 4y = 0$	
C. $-x - y = 4$ D. $x + 4y = -6$	
E. $x - 2y = 1$	
Question 5 (13 marks)	
Let $f: R \to R, f(x) = (x-3)(x-1)(x^2+3)$ and $g: R \to R, g(x) = x^4 - 8x$.	
a. Express $x^4 - 8x$ in the form $x(x-a)((x+b)^2+c)$.	2 marks
b. Describe the translation that maps the graph of $y = f(x)$ onto the graph of $y = g(x)$.	1 mark
c. Find the values of <i>d</i> such that the graph of $y = f(x + d)$ has	
i. one positive x-axis intercept	1 mark
ii. two positive x-axis intercepts.	1 mark
d. Find the value of <i>n</i> for which the equation $g(x) = n$ has one solution.	1 mark

e.	At th is –n	he point $(u, g(u))$, the gradient of $y = g(x)$ is <i>m</i> and at the point $(v, g(v))$, the gradient <i>m</i> , where <i>m</i> is a positive real number.	
		Find the value of $u^3 + v^3$.	2 marks
	ii.	Find u and v if $u + v = 1$.	1 mark
f.	i.	Find the equation of the tangent to the graph of $y = g(x)$ at the point $(p, g(p))$.	1 mark
	ii.	Find the equations of the tangents to the graph of $y = g(x)$ that pass through the point	
		with coordinates $\left(\frac{3}{2}, -12\right)$.	3 marks
		(2)	
1			
			_

