SOS HERMANN GMEINER SCHOOLS, NEPAL

 Joint SEE Preparatory Examination- 2078Time: 3:00 hrs
Optional Mathematics
F.M. : 100

Attempt all the questions. All the working must be shown.

$$
\text { Group 'A' } \quad[5 \times(1+1)=10]
$$

1. (a) State the factor theorem.
(b) Find the inequality whose boundary line is $3 x+7 y=10$ and the solution set does not contain $(-2,3)$.
2. (a) At which point the function $f(x)=\frac{2}{2 x-3}$ is discontinuity?
(b) b. Find the value of x, if $\left|\begin{array}{cc}4 & 5 \\ x & 15\end{array}\right|=0$
3. (a) Write a single equation which represents both the axes.
(b) Which conic section is form if a plane intersects a cone parallel to its base?
4. (a) Express $\cos 3 \lambda$ in terms of $\cos \lambda$.
(b) Express as sum or difference form: $\cos 48^{\circ} \cdot \sin 32^{\circ}$
5. (a) In which transformation does the point $(4,5)$ map to $(-5,4)$?
(b) Write the formula to find the angle between vectors \vec{a} and \vec{b}

Group 'B'

$[13 \times 2=26]$
6. (a) If $f: x \rightarrow 2 x-3$, find the value of $f^{-1}(2)$.
(b) Find the remainder when a polynomial $3 x^{2}-4 x+6$ is divided by $(x+2)$.
(c) Find the vertex of parabola $y=x^{2}+4 x-5$
7. (a) Find the inverse of matrix $\left(\begin{array}{cc}5 & -2 \\ 6 & 4\end{array}\right)$
(b) If $\left(\begin{array}{cc}-5 & 2 \\ m & 4\end{array}\right)$ is a singular matrix, find the value of m.
8. (a) lf the lines $3 x-4 y=12$ and $6 x+p y+5=0$ are parallel to each other, find the value of p.
(b) Find the angle between the lines represented by $x^{2}-5 x y+$ $4 y^{2}=0$.
9. (a) Prove that: $\sin 70^{\circ}+\cos 70^{\circ}=\sqrt{2} \cos 25^{\circ}$
(b) If $\sin \frac{A}{3}=\frac{2}{5}$, find the value of $\sin A$.
(c) If $\sin \theta-\cos \theta=0$, find the value of θ under $0^{\circ} \leq \theta \leq 360^{\circ}$.
10. (a) In a parallelogram $P Q R S$, if $\overrightarrow{P S}=2 \vec{i}+3 \vec{j}$ and $\overrightarrow{P Q}=$ $4 \vec{i}-5 \vec{j}$. Find $\overrightarrow{P R}$.
(b) If $\vec{a}=\binom{4}{3}$ and $\vec{b}=\binom{-3}{4}$, find the angle between \vec{a} and \vec{b}.
(c) In a continuous series $N=30, \Sigma f m=870$ and $\Sigma f(m-$ $\bar{x})^{2}=11070$ then find the standard deviation and its coefficient.

Group 'C'

$[11 \times 4=44]$
11. Solve: $2 x^{3}+6-3 x^{2}-11 x=0$
12. Solve graphically: $x^{2}-x-2=0$.
13. Examine the continuity of the function

$$
f(x)=\left\{\begin{array}{ll}
1+x & \text { for } x \leq 2 \\
5-x & \text { for } x>2
\end{array} \text { at } x=2\right.
$$

14. Solve by Cramer's rule

$$
\frac{2}{x}+\frac{5}{y}=1 ; \quad \frac{3}{x}+\frac{2}{y}=\frac{19}{20}
$$

15. Find the equation of the straight lines passing through the point $(-1,4)$ and making an angle of 45° with the line $3 x+4 y=12$.
16. Prove that: $\sin \theta \cdot \sin \left(60^{\circ}+\theta\right) \cdot \sin \left(60^{\circ}-\theta\right)=\frac{1}{4} \sin 3 \theta$
17. In any triangle ABC , prove that:
$\sin (B+C-A)+\sin (C+A-B)+\sin (A+B-C)=4 \sin A \sin B \sin C$
18. The angle of elevation of the top of a tower from a point was observed to be 45° and walking 60 m towards the tower it was found to be 60°. Find the height of the tower.
19. Find a $2 x 2$ transformation matrix which transforms a unit square into the parallelogram $\left[\begin{array}{llll}0 & 3 & 4 & 2 \\ 0 & 1 & 3 & 2\end{array}\right]$.
20. Calculate the mean deviation from mean and its coefficient

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	6	7	13	4	10

21. Find the standard deviation and its coefficient from the data given bellow:

Class Interval	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	8	12	10	13	7

Group 'D'

$$
[4 \times 5=20]
$$

22. The sum of three numbers in A.P. is 9 . If 4 is added to third term then the resulting numbers are in G.P. Find the numbers.
23. Find the equation of the circle passing through the points (4, $10)$ and $(6,5)$ and having its centre on the line $4 x+y=16$.
24. Prove vectorically that the diagonals of rectangle are equal.
25. A triangle with vertices $\mathrm{A}(4,6), \mathrm{B}(3,1)$ and $\mathrm{C}(6,4)$ is reflected on the line $x=4$ and then the image so formed is rotated about origin through positive quarter turn. Find stating the coordinates of vertices of image triangles on the same graph.
