SOS HERMANN GMEINER SCHOOLS, NEPAL Joint SEE Preparatory Examination- 2078

Time: 3:00 hrs

Optional Mathematics

F.M.: 100

Attempt all the questions. All the working must be shown.

Group 'A'

$$[5 \times (1+1) = 10]$$

- 1. (a) State the factor theorem.
 - (b) Find the inequality whose boundary line is 3x + 7y = 10 and the solution set does not contain (-2,3).
- 2. (a) At which point the function $f(x) = \frac{2}{2x-3}$ is discontinuity?
 - (b) b. Find the value of x, if $\begin{vmatrix} 4 & 5 \\ x & 15 \end{vmatrix} = 0$
- 3. (a) Write a single equation which represents both the axes.
 - (b) Which conic section is form if a plane intersects a cone parallel to its base?
- 4. (a) Express $\cos 3\lambda$ in terms of $\cos \lambda$.
 - (b) Express as sum or difference form: $\cos 48^{\circ}$. $\sin 32^{\circ}$
- 5. (a) In which transformation does the point (4,5) map to (-5,4)?
 - (b) Write the formula to find the angle between vectors \vec{a} and \vec{b}

Group 'B'

$[13 \times 2 = 26]$

- 6. (a) If $f: x \to 2x 3$, find the value of $f^{-1}(2)$.
 - (b) Find the remainder when a polynomial $3x^2 4x + 6$ is divided by (x + 2).
 - (c) Find the vertex of parabola $y = x^2 + 4x 5$
- 7. (a) Find the inverse of matrix $\begin{pmatrix} 5 & -2 \\ 6 & 4 \end{pmatrix}$

- (b) If $\begin{pmatrix} -5 & 2 \\ m & 4 \end{pmatrix}$ is a singular matrix, find the value of m.
- 8. (a) If the lines 3x 4y = 12 and 6x + py + 5 = 0 are parallel to each other, find the value of p.
 - (b) Find the angle between the lines represented by $x^2 5xy + 4y^2 = 0$.
- 9. (a) Prove that: $\sin 70^{\circ} + \cos 70^{\circ} = \sqrt{2} \cos 25^{\circ}$
 - (b) If $\sin \frac{A}{3} = \frac{2}{5}$, find the value of $\sin A$.
 - (c) If $\sin \theta \cos \theta = 0$, find the value of θ under $0^{\circ} \le \theta \le 360^{\circ}$.
- 10. (a) In a parallelogram PQRS, if $\overrightarrow{PS} = 2\vec{i} + 3\vec{j}$ and $\overrightarrow{PQ} = 4\vec{i} 5\vec{j}$. Find \overrightarrow{PR} .
 - (b) If $\vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$, find the angle between \vec{a} and \vec{b} .
 - (c) In a continuous series $N = 30, \Sigma fm = 870$ and $\Sigma f(m \bar{x})^2 = 11070$ then find the standard deviation and its coefficient.

Group 'C' $[11 \times 4 = 44]$

- 11. Solve: $2x^3 + 6 3x^2 11x = 0$
- 12. Solve graphically: $x^2 x 2 = 0$.
- 13. Examine the continuity of the function

$$f(x) = \begin{cases} 1+x & \text{for } x \le 2\\ 5-x & \text{for } x > 2 \end{cases} \text{ at } x = 2$$

14. Solve by Cramer's rule

$$\frac{2}{x} + \frac{5}{y} = 1; \quad \frac{3}{x} + \frac{2}{y} = \frac{19}{20}$$

15. Find the equation of the straight lines passing through the point (-1,4) and making an angle of 45° with the line 3x + 4y = 12.

- 16. Prove that: $\sin \theta \cdot \sin(60^\circ + \theta) \cdot \sin(60^\circ \theta) = \frac{1}{4} \sin 3\theta$
- 17. In any triangle ABC, prove that:

$$\sin(B+C-A)+\sin(C+A-B)+\sin(A+B-C) = 4\sin A\sin B\sin C$$

- 18. The angle of elevation of the top of a tower from a point was observed to be 45° and walking 60 m towards the tower it was found to be 60° . Find the height of the tower.
- 19. Find a 2x2 transformation matrix which transforms a unit square into the parallelogram $\begin{bmatrix} 0 & 3 & 4 & 2 \\ 0 & 1 & 3 & 2 \end{bmatrix}$.
- 20. Calculate the mean deviation from mean and its coefficient. Class Interval $\begin{vmatrix} 0 10 & 10 20 & 20 30 & 30 40 & 40 50 \end{vmatrix}$ Frequency $\begin{vmatrix} 6 & 7 & 13 & 4 & 10 \end{vmatrix}$
- 21. Find the standard deviation and its coefficient from the data given bellow:

Class	Interval	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
Fre	quency	8	12	10	13	7

Group 'D'
$$[4 \times 5 = 20]$$

- 22. The sum of three numbers in A.P. is 9. If 4 is added to third term then the resulting numbers are in G.P. Find the numbers.
- 23. Find the equation of the circle passing through the points (4, 10) and (6, 5) and having its centre on the line 4x + y = 16.
- 24. Prove vectorically that the diagonals of rectangle are equal.
- 25. A triangle with vertices A(4, 6), B(3, 1) and C(6, 4) is reflected on the line x = 4 and then the image so formed is rotated about origin through positive quarter turn. Find stating the coordinates of vertices of image triangles on the same graph.