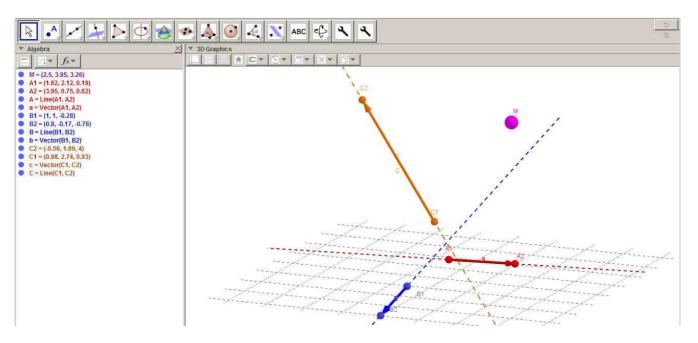
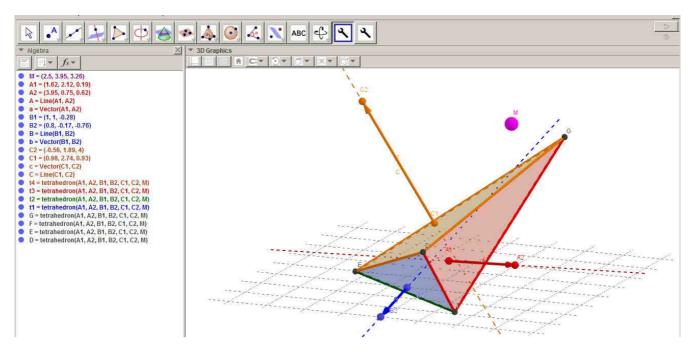
TETRAHEDRON:



1. input: 3 vectors defined by 6 points in space, plus 1 arbitrary point in space



- 2. select tetrahedron tool
- 3. select the 6 points defining the 3 vectors

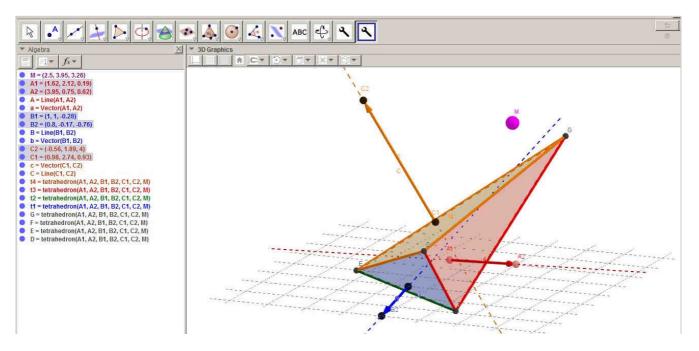


4. select the arbitrary point.

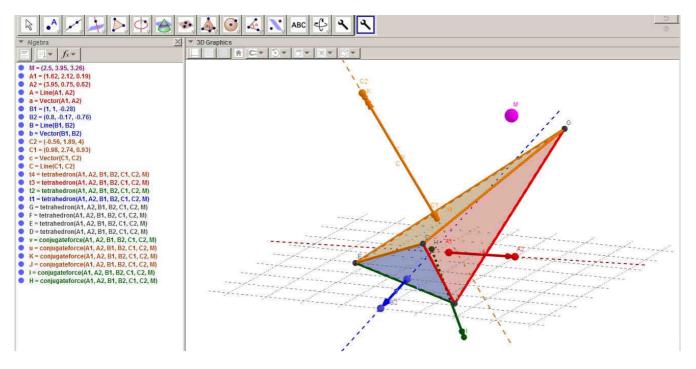
The tetrahedron is such that the oriented area of each face is proportional and perpendicular to each vector. Moving the point M can adjust the tetrahedron.

...Hope someone will come up with a method to build a tetrahedron such that the centroid of each face coincides with the line of action of the corresponding force!

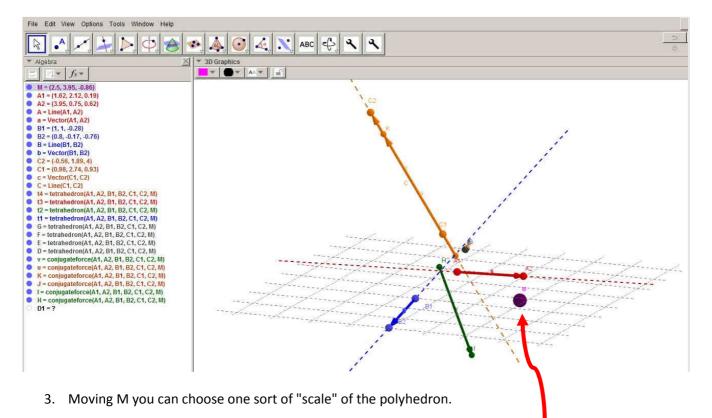
CONJUGATE FORCE:



1. conjugate force of one force: Select the "conjugate force" tool and select the 6 points defining the 3 vectors



2. select the arbitrary point M



One point is particularly interesting, it is when the polyhedron reduces to **one single point**, and beyond, reverses itself. This point may be considered as sort of "Centroid" of the system of 4 forces...

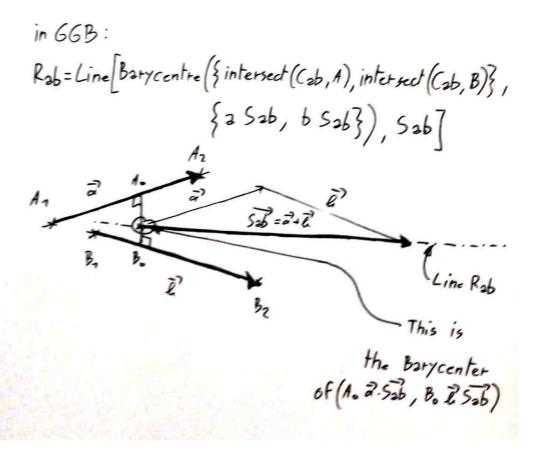
Hope someone will find a method to construct this "central point"!

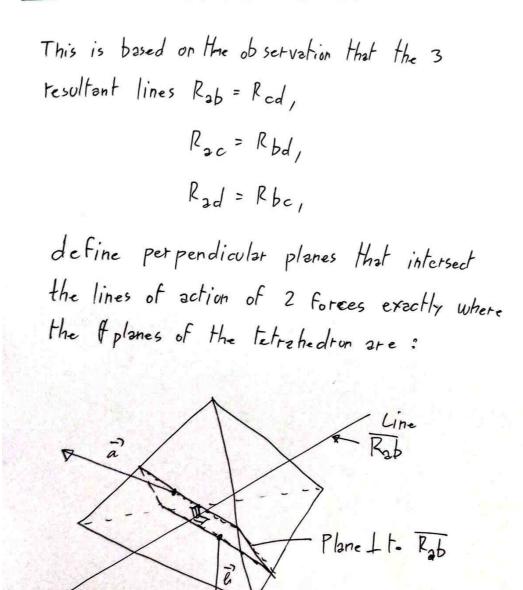
Note: The 2 tools, conjugate force and tetrahedron are independent. The tetrahedron construction needs the conjugate force but it is included in the tool.

Next pages: Some explanations on the geometrical construction...

@ 3 Vectors defined by 6 points:	
$\vec{a} = \vec{A_1 A_2}$ (can be coplanar or not)	
$\vec{l}' = \vec{B}_1 \vec{B}_2$	
$\vec{c} = \vec{c_1 c_2}$	
@ 3 Lines defined by the same points:	
$A = \overline{A_1 f_2}$	
$B = \overline{B_1} B_2$	
$C = \overline{C_1 C_2}$	
3 Sum & Cross Product of a & E?:	
$\overline{S_{ab}} = \overline{a} + \overline{b}$	
ab = ab b	
@Locating the Cross Product:	
$(Line) C_{2b} = Plane(A_1, A_2, A_2 + 2\overline{b}) \cap Plane(B_1, B_2, B_2 + 2\overline{b})$	
a Az Line A	
* Line Cab	
Br Line B	

5 Locating the Resultant: (Line) Rab = Line (Hrough Bary (CabnA, a.Sab) (CabnB, B.Sab)] 11 to 526





So from one point one can find the other 3 ...

References for the theory:

Iva Kodrnja et al., Line geometry and 3D graphic statics, Građevinar 10/2019 DOI: https://doi.org/10.14256/JCE.2725.2019

Jürgen Richter-Gebert, Perspectives on Projective Geometry, Springer 2010

Geogebra Construction of the Conjugate Force and the Tetrahedron:

Laurent Fournier, Kolkata - 28 March 2021