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Abstract. The geophysical problem which is the original reason for 
developing the present mathematical model is that of wide displacements 
of geographical- poles. A theory forecasting such a phenomenon was 
formulated by Hapgood and Campbell in the 1950's and rests on the 
hypothesis of the existence of a force having a component tangent to the 
surface of the earth. The particular force they thought to be the 
responsible for this phenomenon was rather controversial; moreover no 
detailed calculation of the stresses in the crust was given. 
Here a first order mathematical model is proposed for the crust of the 
earth subjected to a generic force having a component on the tangent 
plane. The two dimensional continuum is studied in the Riemannian surface 
of the ellipsoid. The present model could also be of some use in 
astrophysics when dealing with microstarquakes on the neutron stars. 
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INTRODUCTION 

In the 1950's Hapgood and Campbell (1956, 
1958) faced an ancient problem of 
geophysics: the wide displacement of the 
geographical poles. They sustained that 
during the hystory of our planet 
displacements of thousands of kilometers 
should have taken place during intervals 
of time very short as compared with 
geological times (they suggested periods 
of movement of 2-3 thousand years every 
40-50 thousand years). Such a ,statement 
was supported by climatic, paleontologic 
and geophysical arguments. The idea was 
not new; it was considered and discarded 
even by Maxwell (1857). New was however 
the mechanism they suggested. 
Let us consider the earth like an 
ellipsoid of revolution which is rotating 
around its minor axis. Due to the well 
known phenomenon of the stiffness of the 
gyroscopical axis, very strong forces 
should be needed in order to have 
appreciable displacements of the axis of 
rotation. That was the reason why the idea 
of wide displacements of the poles was 
abandoned for a long time. 
On the other hand Hapgood and Campbell 
considered movements of the crust as a 
whole. The crust of the earth is floating 
on the magma. A force applied to the crust 
tends to move it. With a perfectly 
spherical earth and in the absence of 
static friction the movement would begin. 
With an oblate ellipsoid, if the moment of 
the force with respect to the center has a 
null component along the rotational axis, 
the movement is not allowed and the crust 
is subjected to stresses. If they reach 
the ultimate strength the crust will break 
and the movement will begin. Hapgood and 
Campbell proposed a force as a candidate 
to be the responsible for this phenomenon. 
They observe that the wide expance of the 
antarctic ice has its center of mass which 
is not on the axis of rotation. If the ice 

is not isostasated, a centrifugal force 
will be originated in the reference system 
at rest with the earth. Such a force will 
have a component tangent to the meridian. 
The theory was praised by Einstein himself 
but was later abandoned mainly for two 
reasons. One of them is the controversial 
hypothesis that the antarctic polar ice is 
not isostasated. The other was the lack of 

mathematical 
detailed 

model able to lead to 
calculations of the stresses in 

the crust. 
Here a mathematical model is studied for 
the crust of the earth subjected to forces 
applied to a small part of it 
(independently of the hypotheses on the 
nature of these forces). 

THE MODEL 

In order to give a mathematical model of 
the physical system let us introduce 
strong simplifying hypotheses which will 
be progressively weakened in future 
developments. 
-The shape of the earth is considered like 
an ellipsoid of revolution where B is the 
minor semi-axis while A is the radius of 
the equatorial circle. 
-The crust of the earth is regarded like a 
shell that is like a continuum, perfectly 
flessible system which can be 
geometrically represented by a two 
dimensional surface. 
-The properties of the shell are assumed 
to be isotropic and homogeneous. Obviously 
this hypothesis is not verified for the 
crust of the earth and will therefore be 
the first one to be abandoned in a second 
order model. 
-Let the closed shell be acted upon by a 
system of forces applied to a part of the 
surface small if compared to the whole 
surface. 
-Let the resultant of this system of 
forces have no component on the tangent to 
the local parallel; it will only have a 
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component along the normal to the surface 
and a component along the tangent to the 
meridian. 
-Let us moreover suppose that the contact 
between the ellipsoid and the shell-- is 
frictionless. This hypothesis is surely 
not true during the movement but it seems 
plausible for the static calculations of 
the stresses. The constraint force will 
therefore be normal to the surface in each 
point. 
When all such hypotheses are introduced we 
will say that the first order model is 
considered. 
The problem could be treated as a 
threedimensional one in the Euclidean 
space. Here it appears more convenient to 
treat it as a twodimensional problem in 
the Riemannian geometry of the 
twodimensional surface. 

THE CLASSICAL PROCEDURE 

Let us shortly outline the deduction of 
the general formulas just to show where 
there are differences with respect to the 
usual plane case. 
Let (3 be a piece of the shell , do the 
surface element and Edo the external 
force acting on it. The stress in a point 
P is defined by cutting the shell with a 
regular line t passing through P and 
dividing the surface in two regions 1 and 
2. Let ; be the normal to the line 1 in P 
going from 1 to 2. 

If he is a finite element of P. containing 
P and f is the force that the region 2 
exerts on the region 1 through ~a. , we 
define the vector 

(1) 
R(h) 

= lim A.f/At . 

AL +O 

Here too we have the Cauchy's formula 

(21 * p(d = pini , 

where the summation symbol C is suppressed 
adopting the Einstein convention and p is 
the vector associated to an element normal 
to the axis x1 . 
Notice that one can use a generic 
coordinate system (xi) ; if the surface is 
not developable, like in our case, it is 
not even possible to choose a Cartesian 
reference frame. 
The indefinite equations of equilibrium 
can be obtained by the standard procedure, 
that is by requiring that the resultant 
and the moment of the forces acting on a 
generic element of the surface are null. 
One gets 

(3) F + p.;i = 0 , 
. 1 

(4) P;i Xp; =o, 

where semicolons stand for covariant 
derivatives. 

If g is the unit vector normal to the 
surface, one easily obtains that 

(5) L! . Pi = 0 I 

that is the stresses are tangent to the 
shell and are therefore completely 
determined by the components of the stress 
tensor 

(6) Pij = q.P;j . (i,j=1,2) 

One gets moreover the symmetry of such a 
tensor i.e. 

(7) 
'ij = '.' * 31 

By setting 

(8) F 
j 
= F.P;j , 

(9) Q = F.N -- 1 

equations (3) become 

(10) 

(11) 

Fj + pijli = 0 , 

Q, + p.;i. B = 0 . I 
This is true in general. Now we have to 
take into account that in our hypotheses 
the shell leans on a rigid and given 
surface. Therefore the metric of the 
surface is given. 
The F. can be regarded as 
unknowhs of 

given. The 
our problem are the three 

components of the symmetric stress tensor 
P.. and Q 
&straint force. 

which depends on the 

In order to determine p. we have the two 
indefinite eqs.(lO) on$? The eq.(ll) can 
be used in order to obtain $ once p 
is known. 
The situation is analogous ibut not equal) 
to that of the usual equilibrium of a 
continuum. In the former case one has a 
threedimensional body in the 
threedimensional Euclidean space, while 
the intrinsic study of the equilibrium of 
a shell leaning on a given surface leads 
to a twodimensional problem in a 
Riemannian twodimensional surface (that is 
in general, not plane nor developable). 
BY tensor calculus the two problems are 
treated in a very similar way. There are 
however some important differences. For 
example the derivatives with respect to 
two different coordinates do not commute. 
In other words, if Ai are the components 
of a vector, 

A 
i;jk * Ai.kj * 

We notice that eqs.(lO) are not sufficient 
to determine the stress tensor Pij a One 
has to take into account the nature of the 
shell and its deformations. For a regular 
and infinitesimal displacement whose 
components are si the deformation tensor 
is given by 

(12) 5ik= f'si;k + *k;i ’ . 

For an ordinary elastic body, referring 
both the deformationtensor and the stress 
tensor to the not deformed configuration, 
we have the Hook's low 

(13) Pik =c. 5 
rs 

rkrs 

The symmetry of both tensors p ik and 
grs requires the symmetry of the tensor 
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Ci r* h 
with respect to the two couples of 

in exes: 

(14) =ikrs = 'kin I 
i 

(15) c. rkrs = Ciksr . 

We made the hypothesis of dealing with an 
isotropic body. This implies 

(16) Cikrs = Aaikar, + Bairss + Caisakr , 

where A,B,C are arbitrary scalar 
functions. 
If moreover the body is homogeneous it is 

(17) cikrS= Aaikars + vL(airaks + akrais), 

where h and u are the Lame's constants 
(which are related to the elastic modulus 
E and to the Poisson's ratio m by the well 
known formulas). 
Notice that in the overmentioned formulas 
the indexes assume the values 1 and 2 only 
and 
fundame:& 

are the components of the 
metric tensor of the 

Riemannian SUrfa&. 
One obtains the stress tensor 

(18) pik = he a ik + 2u ik , 

where 8=arsc,, . 
The equations of equilibrium are therefore 
given by 

(19) Fj + XI,~ + u(sj_kk + $;jk 1 = 0. 

If the surface is not developable it is no 
more true that 

(20) s;k = .k 
k j 'k;j ’ 

and one does not obtain the usual formulas 
as in the plane case. Here, if K is the 
Gaussian curvature of the surface, it is 

(21) ' k;j 
k=s;k 

k j 
- Kckr ckj s;- , 

where E' 
tensor. k 

is the completely skewsymmetric 

The equations of equilibrium become 

(22) Fj + ( A + IdSky + 
J 

+ W = 0 . 
j;k 

k + uKs 
j 

By integrating eqs.(22) (with the b;;;;a;; 
conditions) the displacements Si 

found which, put in eqs.(lE), give the 
stress tensor. 
In our model we suppose that the force F. 
is present in a small region only. It cab 
therefore be represented by a 6 
distribution. Otherwise one can, more 
physically, cut a little hole 
corresponding to the region where Fj is 
present and regard the edge of the hole as 
the boundary of the problem that in this 
way becomes homogeneous. On this edge a 
force per unit length will be applied such 
that the resultant is equal to the applied 
total force. 
The mathematical difficulties in 
integrating such equations in our 
particular case are however intimidating. 
Moreover, as we have seen, eqs.(22) hold 
only when the shell is elastic homogeneous 
and isotropic. When dropping these 
hypotheses all the previous results should 
be abandoned and the calculations should 
be made in a different way from the very 
beginning. That is why a different 

approach to the problem has 
considered. 

A DIFFERENT PROCEDURE 

been here 

Let us return to the general equations of 
equilibrium before introducing in it the 
stress-strain relationship, that is to 

(23) F 
j 

= P ij 
;j . 

Let us consider the region where F. = 0 . 
We have J 

(24) pij;j = 0 . 

The different procedure consists in 
integrating eqs.(24) first. In other words 
we want the most general divergenceless 
tensor in the Riemannian twodimensional 
surface of the ellipsoid. To this purpose 
some old results by Bianchi (1922), Finzi 
(1934) and Graiff (1959) will be used. 
Let us remember that for a surface with 
total curvature K = const one can find 
the most general divergenceless tensor 

(25) Fik = aik (h;aS + Kh) - hiik , 

where h is an arbitrary function of the 
place. 
On the other hand, if K is not constant, 
like in our case, it is 

(26) F. tk = 
rk 

hK 
;i * 

One has therefore to search for the most 
general tensor Dik whose divergence is 

(27) D ;k = 
ik 

- hK 
;i ’ 

The solution will be 

(28) Pik = r 
ik 

+ D 
ik . 

The problem of finding 
particularly simple in the case 

Dik 
of t;: 

present model since the line K = const 
are geodetically pafqllel. We remember 
that a system of lines is called 
geodetically parallel'if their orthogonal 
trajectories are geodesics of the surface. 
In the twodimensional surface of 
ellipsoid the "parallels" give a family Z% 
geodetically parallel lines since the 
meridians are their orthogonal tajectories 
and they are geodesics of the surface. 
By setting 

(30) H = K 
;i 

K;i , 

it can be shown (Bianchi, 1922) that if 

(31) EijK H 
;i ;j 

=O , 

and K is not a constant, then 

(32) H = O(K) , 

and the lines K = const are geodetically 
parallel. 
The overmentioned conditions are verified 
in our case. Let us therefore consider the 
symmetric tensor 

(33) D 
is = gK;i K;s ’ 

where g is an arbitrary scalar. It is 

(34) D ;' = (g;sK 
is ;s 

+ gK ;,a)K ;i + 

+ fgH;i . 
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Taking into aCCOUnt eg.(32) it iS 

(35) D. ;' 
IS 

= I g;" K ;s + gK;sa + 

+ fgn’(K) } K ;i ._ - 

By comparing eqs.(35) with eqs.(27) one 
can set 

(36) -h = 9" K;s + gK;a' + fgD’(K) , 

and we finally get 

(37) 'ik = gK;i K;k f 

+ aik (hirr + Kh) - h;ik , 

which is divergenceless. 
It can be shown that eqs.(37) give the 
most general divergenceless tensor on the 
surface. 
It can be moreover noticed that this 
expression contains an arbitrary scalar 
function g together with its derivatives 
up to the third order one. 
Let us now come to the particular geometry 
of our case, that is to the ellipsoid. 
First of all a system of intrinsic 
coordinates has to be chosen. It is 
convenient to chose two angles 

(38) x1=0 , 

(39) x2= e , 

such that in a Cartesian threedimensional 
frame y1 the equations of the surface of 
the ellipsoid is given by 

(40) Y' = A cos$cosO , 

(41) y2 = A cosO.sin$ , 

(42) y3 = B sine . 

The angle 0 gives the longitude of the 
generic point P and is the angle formed 
by the plane (3 passing through the point 
P and the axis of symmetry with the plane 
containing the reference meridian. 
In the overmentioned plane p the position 
of the point P is obtained by the 
following construction 

The angle 0 does 
with the latitude 
latter is however 

(44) tg 0 

The covariant 
fundamental tensor 

(45) a = 
ik 

= 

not therefore coincide 
A of the point P. The 
related to 0 by 

= A/B tg .J . 

components of the 
are given by 

(aP/axi)(aP/axj) = 

(ay,/axi)(aya/axj). 

One gets 

(46) a 11 
= A2sin2$ + $ COS2$ , 

(47) a12 = a21 = 0, 

(48) a 22 
= A2cos2$ , 

and the contravariant components 

(49) a" = l/(A%ir?O + 

(50) ,'2= a21 = 0 , 

(51) a 22 = l/(A2cos29 ). 

B2cos29), 

The Christoffel symbols are obtained by 

(52) (ij,k) = f(aaik/axi + aajk/axi+ 

+ aaij /axk) , 

and are 

(53) {ll,l) = (A2 - B2)cos$ sin+ , 

(54) (12,2) = -A2cos$sin$ , 

(55) {22,1) = A2 cos0 sine , 

(56) (11,2) = (12,l) = {2?,2) = 0 . 

The Riemann tensor can also be obtain by 
the formula 

(57) Rilkr= a(ik,l)/ax= - a(ir,l)/axk - 

- ahj((ik,h)(lr,j) - (ir,h)(lk,j)) . 

We are interested only in the Gaussian 
curvature which is given by 

(581 K = R,2,2 / D 

where D is the determinant of the 
fundamental metric tensor. One obtains 

(59) K = B2/(A2sin2$ + B2cos2$)2 . 

The same result can also be obtained by 
remembering that for a surface of 
revolution, if it is possible to put the 
metric in the form 

(60) ds2 = d$ + ~~(1) de2 , 

then the curbature has the simple 
expression 

(61) K = - d2p/pd12 , 

In our case one obtains the form (60) by 
chasing the coordinates P and 1 as in 
the following figure (drawn in the plane 
P) 

P P 

I a3 -----__----t_______-_- 

coordinates 
ZsilEEains eq.(59). 

and eq.(61) one 

Now H can be obtained. It is 
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(62) H = ais K;i K;s = 

= 16B4((A2- B2).sin+cosg}2/(A2sin2$ + 

+ B2cos2$ I7 . ._ 

Moreover it is 

(63) &-i'(K) = dH/dK = 

= 8B2{6(~~ - B2)2sin2$cos2+ - 

- (A2- B2)(B%os4@ - A2sin4$))/ 

/(A2 sin20 +$cos?o J5 . 

By putting eqs.(59), (62) and (63) into 
eqs.(36) and (37) one gets the most 
general divergenceless tensor on the 
surface of the ellipsoid 

(64) Pik = -h ;ik 
+ 

+ 16 6;6;g$ (B* - A2)2cos2# sin2$ / 

/ (A2sin20 + B2cos2$)8 + 

+ 
aik(h;s ' + hB2/(A2sin20 + B2cos20 i2). 

where 

(65) -h = 4(ag/a$ )(B2 - A2)cos$ sin+ / 

/ (A2sin2$ + B2cos2$ I4 + 

+ 4gB2 ( 12(A2 - B2)2sin2$cos24+ 

+ 2(B2 - A2)(B2cos 4+- A3sin4$) + 

+ (A2 - B2)(A2sin4+ + $sin2$c!os2# 1 1 / 

/ (A&r++ + B2c0s29$' . 

Notice that in calculating eq.(65) it has 
been taken into account that 

(66) K 
.i 

= K 
;i ' 

where the comma followed by an index i 
stands for the partial derivative with 
respect to ti while a semicolon stands 
for a covariant derivative, and that 

(67) K i= K ..aij - K,*cf’ a ij(ij,r). 
;i *'J 

In the same way, when substituting eq.(65) 
into eqs.(64) in order to make them 
explicit, one has to take into account 
that 

(68) h ;ij = h 
,ij 

- h,aars (ij,r). 

CONCLUDING REMARKS 

A mathematical model for calculating the 
stesses in a shell leaning on a given 
ellipsoid and acted upon by a force 
applied to a small part of the shell has 
been given. A procedure different from the 
traditional one has been followed. The 
solution of the problem has been splitted 
in two steps the first of which consists 
in searching the general solution of the 
indefinite equations of equilibrium. 
Equations (64) give the most general 
stress tensor on the surface of the given 
ellipsoid. An arbitrary scalar function 
g( # ) together with its derivatives up 
to the third order is present; such a 
function has to be calculated by taking 
into account the properties of the 

material the shell is made out of, and the 
boundary conditions (the distribution of 
forces on the mentioned edge of the hole). 
This will be called the second step of the 
calculation of the stresses. 
BY comparing this approach to the one 
which is traditional (at least in the 
plane case) we can see that by splitting 
the problem in two steps it has been 
possible to solve the first one in an 
exact way. Moreover the results of the 
first step are independent of the kind of 
material the crust is made out of. This 
feature is particularly suitable for our 
case. Indeed when considering the set of 
the hypotheses of our model one realizes 
that the less plausible ones are just 
those of the isotropy and homogeneity of 
the material. These hypotheses will be 
retained for the first order model only 
and then will be dropped in order to 
introduce the experimental coefficients 
which are not isotropic nor homogeneous. 
The advantage of the present procedure is 
that the results of the first step 
calculations will still be valid. 
Finally one can observe that the model 
presented is not strictly linked to the 
problem of calculating stresses for the 
crust of the earth. It can be used, for 
example, in astrophysics in order to 
explain microstarquakes on the neutron 
stars. Indeed the current explanation 
(Baym and Pines, 1971; Pines and Shaham, 
1972) is that they are caused by a 
misorientation between the axis of figure 
and the axis of rotation. 

Acknowledgements. The present research has 
been done under the auspices of GNFM of 
CNR. 

REFERENCES 

Baym, G. and D. Pines (1971). Neutron 
Starquakes and Pulsar Speedup, Ann. 
w, 

Bianchi, L 
differenziale, Piss. D.LMb. 

Campbell, J. H. and 

66,816. 
. (1922). Lezioni di geometria _ -7-z 

C. H. Hapgood (1956). 
Effect of Polar Ice on the Crust of 
the Earth, Yale Scient. !gg&, 21, 
n.1. 

Finzi, B. (1934). Integrazione delle 
esuazioni indefinite della meccanica 
dei sistemi continui. Rend. . Accad 
Naz Lincei d-8 2, 6. 

Graiff. F. (1959). Soluzione aenerale 
tensoriale delle equazioni indefinite 
di equilibrio per una membrana, Rend. 
Accad. Naz Lincei 26, 189. -d-f 

Hapgood, C.H. (1958). Earth's Shifting 
Crust. A Key to Some Basic Problems 
of Earth Science, Pantheon Books -, New 
York. 

Maxwell, J. C. (1857). On a Dynamical Top 
Exibiting Phenomena of the Motion of 
a System of Invariable Form about a 
Fixed Point, with Some Suggestions as 
to the Earth's Motion, Trans. Royal 
Society of Edinburgh. 21,248. 

Pines, D. and?. Shaham (19721. Proceed- 

- 
Interiors. 


