[MAA 2.6] TRANSFORMATIONS
 SOLUTIONS

Compiled by: Christos Nikolaidis

O. Practice questions

1.

$y=f(x)+5$	$(1,5.5)$	$y=f(x+5)$	$(-4,0.5)$
$y=f(x)-5$	$(1,-4.5)$	$y=f(x-5)$	$(6,0.5)$
$y=5 f(x)$	$(1,2.5)$	$y=f(5 x)$	$(0.2,0.5)$
$y=f(x) / 5$	$(1,0.1)$	$y=f(x / 5)$	$(5,0.5)$
$y=-f(x)$	$(1,-0.5)$	$y=f(-x)$	$(-1,0.5)$

2. (a)

$y=f(x)+3$	$(-1,6)$	$y=f(x+3)$	$(-4,3)$
$y=f(x)-3$	$(-1,0)$	$y=f(x-3)$	$(2,3)$
$y=3 f(x)$	$(-1,9)$	$y=f(3 x)$	$(-1 / 3,3)$
$y=f(x) / 3$	$(-1,1)$	$y=f(x / 3)$	$(-3,3)$
$y=-f(x)$	$(-1,-3)$	$y=f(-x)$	$(1,3)$

(b)

$f(x)$	$(-1,3)$
$2 f(x)$	$(-1,6)$
$2 f(x-3)$	$(2,6)$
$2 f(x-3)+4$	$(2,10)$

Hence the corresponding point is $(2,10)$
3.
(a)

(c) $y=2 f(x)$

(b) $y=f(x)-2$

(d) $y=\frac{1}{2} f(x)$

(e) $y=-f(x)$

(f) $\quad y=f(x+3)$

(g) $y=f(x-3)$

(h) $y=f(3 x)$

(i) $\quad y=f\left(\frac{x}{2}\right)$

(j) $y=f(-x)$

4. (a) $-f(x-2)+5$

$f(x)$	original
$-f(x)$	reflection in x-axis
$-f(x-2)$	horizontal translation 2 units to the right
$-f(x-2)+5$	vertical translation 5 units up

(b) $-3 f(x+2)-1$

$f(x)$	original
$-f(x)$	reflection in x-axis
$-3 f(x)$	vertical stretch with s.f. 3
$-3 f(x+2)$	horizontal translation 2 units to the left
$-3 f(x+2)-1$	vertical translation 1 unit down

(c) $\quad f(2 x-10)$

$f(x)$	original
$f(x-10)$	horizontal translation 10 units to the right
$f(2 x-10)$	horizontal stretch with s.f. $1 / 2$ (i.e. shrink)

(d) $\quad f(2(x-5))$

$f(x)$	original
$f(2 x)$	horizontal stretch with s.f. $1 / 2$ (i.e. shrink)
$f(2(x-5))$	horizontal translation 5 units to the right

A. Exam style questions (SHORT)

5. (a) (i)

(ii)

(b) $\quad \mathrm{A}^{\prime}(3,2)($ Accept $x=3, y=2)$
6. (a) (I) D (ii) C (iii) A
(b) B: $f(x)+2$ E: $f(x-2)$
7. (a) (i) 1 (ii) 0.5
(b)

(c)

	$y=f(x)$	$y=3 f(-x)$	$y=f(2 x)$.
Domain	$0 \leq x \leq 4$	$-4 \leq x \leq 0$	$0 \leq x \leq 2$
Range	$0 \leq \mathrm{y} \leq 1$	$0 \leq y \leq 3$	$0 \leq y \leq 1$

8. (a)

(b) $x=3+1, y=\frac{1}{2} \times 2 \quad \mathrm{P}$ is $(4,1)$
9. (a)

(b)

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	C
Maps f to $f(x)+1$	D

(c) translation (move/shift/slide etc.) 6 units to the left and 2 units down
10. (a) By GDC the coordinates are $(-1,1.66)$ [or $\left.\left(-1, \frac{5}{3}\right)\right]$
[Notice: it can also be found by using derivatives later on]
(b) (i) $(-3,-9)$
(ii) $(1,-4)$
(iii) reflection gives $(3,9)$
stretch gives $\left(\frac{3}{2}, 9\right)$
11. (a)

Note: reflection in x-axis, correct vertex and all intercepts approximately correct.
(b)
(i) $g(-3)=f(0) \quad f(0)=-1.5$
(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0}$
(c)

	$y=f(x)$	$y=-f(x)$	$y=f(x+3)$.
Domain	$-1 \leq x \leq 4$	$-1 \leq x \leq 4$	$-4 \leq x \leq 1$
Range	$-4 \leq y \leq 0.5$	$0.5 \leq y \leq 4$	$-4 \leq y \leq 0.5$

12. (a)

(b) Minimum: $\left(1, \frac{3}{2}\right)$ Maximum: $(2,2)$
13. (a) $g(x)=2 f(x-1)$

x	0	1	2	3
$x-1$	-1	0	1	2
$f(x-1)$	3	2	0	1

$g(0)=2 f(-1)=6 \quad g(1)=2 f(0)=4$
$g(2)=2 f(1)=0 \quad g(3)=2 f(2)=2$
(b) Graph passing through $(0,6),(1,4),(2,0),(3,2)$

14. (a)

(b) $\quad g(-3)=-1 g(-1)=3 \quad$ Line joining $g(-3)$ and $g(-1)$ drawn
(c)

	$y=f(x)$	$y=\mathrm{g}(x)$
Domain	$0 \leq x \leq 2$	$-3 \leq x \leq-1$
Range	$1 \leq y \leq 5$	$-1 \leq y \leq 3$

15. (a) $y=(x-1)^{2}$
$y=4(x-1)^{2}$
$y=4(x-1)^{2}+3$
(b)

$y=x^{2}$	$(0,0)$
$y=(x-1)^{2}$	$(1,0)$
$y=4(x-1)^{2}$	$(1,0)$
$y=4(x-1)^{2}+3$	$(1,1)$

16. (a) in any order
translated 1 unit to the right
stretched vertically by factor 2
(b) METHOD 1

Finding coordinates of image on g
$(-1,1) \rightarrow(-1+1,2 \times 1)=(0,2)$
P is $(3,0)$

METHOD 2

$h(x)=2(x-4)^{2}-2$
P is $(3,0)$
17. (a) $(1,-2)$
(b) $g(x)=3(x-1)^{2}-2(\operatorname{accept} p=1, q=-2)$
(c) $(1,2)$
18. (a) $g(x)=-(x-3)^{2}-4$, therefore the maximum point is $(3,-4)$
(b) $f(x)$ is mapped onto $g(x)$ by a reflection in the x-axis followed by the translation $\binom{3}{-4}$.
19. (a) the vertex is at $(3,5)$

$$
y=2(x-3)^{2}+5
$$

(b) (i) $k=2$
(ii) $p=3$
(iii) $q=5$
20.

$q=5$
$k=3, p=4$
21. (a) (i) $h=3$ (ii) $k=1$
(b) $g(x)=f(x-3)+1,5-(x-3)^{2}+1,6-(x-3)^{2},-x^{2}+6 x-3$
(c)

22. (a) By completing the square or finding the vertex $(2,1)$
$3(x-2)^{2}-1$
(b) METHOD 1

Vertex shifted to $(5,4), \quad g(x)=3(x-5)^{2}+4$
METHOD 2
$g(x)=3((x-3)-2)^{2}-1+5=3(x-5)^{2}+4$
23.
(a)

(b)

24.

$$
\begin{aligned}
y & =2(x-2)^{2}+4(x-2)+7-1 \\
& =2\left(x^{2}-4 x+4\right)+4 x-8+6 \\
& =2 x^{2}-8 x+8+4 x-2 \\
& \Rightarrow y=2 x^{2}-4 x+6
\end{aligned}
$$

25. $g(x)=f(x-1)-1=2(x-1)^{3}-3(x-1)^{2}+(x-1)+1-1=\ldots=2 x^{3}-9 x^{2}+13 x-6$

B. Exam style questions (LONG)

26. (a) $f(x)=3\left(x^{2}+2 x+1\right)-12=3 x^{2}+6 x+3-12=3 x^{2}+6 x-9$
(b) (i) vertex is $(-1,-12)$
(ii) $x=-1$ (must be an equation)
(iii) $(0,-9)$
(iv) $3(x+3)(x-1)=0$
$(-3,0),(1,0)$
(c)

(d) $\quad\binom{p}{q}=\binom{-1}{-12}, t=3 \quad(p=-1, q=-12, t=3)$
27. (a) $(f \circ g)(x)=(x-1)^{2}+4 \quad\left(x^{2}-2 x+5\right)$
(b) METHOD 1
vertex of $f \circ g$ at $(1,4)$
adding $\binom{3}{-1}$ to the coordinates
vertex of h at $(4,3)$
METHOD 2
find $h(x)=((x-3)-1)^{2}+4-1, h(x)=(f \circ g)(x-3)-1$
$h(x)=(x-4)^{2}+3$
vertex of h at $(4,3)$
(c) $\quad h(x)=(x-4)^{2}+3=x^{2}-8 x+16+3=x^{2}-8 x+19$
(d) $x^{2}-8 x+19=2 x-6$
$x^{2}-10 x+25=0 \Leftrightarrow(x-5)^{2}=0$
$x=5(p=5)$
[there is also an alternative method using derivatives which we will study later on]
28. (a)

Notes: The graph of y_{2} is y_{1} stretched horizontally by s.f. $1 / 2$ (shrink) points of intersection with the x-axis $(m / 2,0)$ and $(n / 2,0)$
(b)

Notes: The graph of y_{3} is y_{1} shifted k units to the right.
points of intersection with the x-axis $(m+k, 0)$ and $(n+k, 0)$
(c) (i) $m / 2, n / 2$
(ii) $m+3, n+3$
(iii) $\frac{m+3}{2}, \frac{n+3}{2}$

EITHER by using transformations
OR by substitution
For example, for (iii), the solutions are obtained by letting $2 x-3=m$ and $2 x-3=n$ so that $x=\frac{m+3}{2}, x=\frac{n+3}{2}$

