[MAA 2.6] TRANSFORMATIONS

SOLUTIONS

Compiled by: Christos Nikolaidis

O. Practice questions

1.

y = f(x) + 5	(1, 5.5)	y = f(x+5)	(-4, 0.5)
y = f(x) - 5	(1, -4.5)	y = f(x - 5)	(6, 0.5)
y = 5f(x)	(1, 2.5)	y = f(5x)	(0.2, 0.5)
y = f(x) / 5	(1, 0.1)	y = f(x / 5)	(5, 0.5)
y = -f(x)	(1, -0.5)	y = f(-x)	(-1, 0.5)

2. (a)

3.

y = f(x) + 3	(-1, 6)	y = f(x+3)	(-4, 3)
y = f(x) - 3	(-1, 0)	y = f(x - 3)	(2, 3)
y = 3f(x)	(-1, 9)	y = f(3x)	(-1/3, 3)
y = f(x) / 3	(-1, 1)	y = f(x/3)	(-3, 3)
y = -f(x)	(-1, -3)	y = f(-x)	(1, 3)

(b)
$$f(x)$$
 (-1, 3)
 $2f(x)$ (-1, 6)
 $2f(x-3)$ (2, 6)
 $2f(x-3)+4$ (2, 10)

Hence the corresponding point is (2,10)

(c) y = 2f(x)

4.

(a) -f(x-2)+5

f(x)	original
-f(x)	reflection in x-axis
-f(x-2)	horizontal translation 2 units to the right
-f(x-2)+5	vertical translation 5 units up

(b)
$$-3f(x+2)-1$$

f(x)	original	
-f(x)	reflection in x-axis	
-3f(x)	vertical stretch with s.f. 3	
-3f(x+2)	horizontal translation 2 units to the left	
-3f(x+2)-1	vertical translation 1 unit down	

(c)
$$f(2x-10)$$

f(x)	original
f(x-10)	horizontal translation 10 units to the right
f(2x-10)	horizontal stretch with s.f. 1/2 (i.e. shrink)

(d)
$$f(2(x-5))$$

f(x)	original
f(2x)	horizontal stretch with s.f. 1/2 (i.e. shrink)
f(2(x-5))	horizontal translation 5 units to the right

A. Exam style questions (SHORT)

- (b) A' (3, 2) (Accept x = 3, y = 2)
- 6. (a) (I) D (ii) C (iii) A (b) B: f(x)+2 E: f(x-2)

	y = f(x)	y = 3f(-x)	y = f(2x).
Domain	$0 \le x \le 4$	$-4 \le x \le 0$	$0 \le x \le 2$
Range	$0 \leq y \leq 1$	$0 \le y \le 3$	$0 \le y \le 1$

8. (a)

9. (a)

(c) translation (move/shift/slide etc.) 6 units to the left and 2 units down

10. (a) By GDC the coordinates are (-1,1.66) [or $\left(-1,\frac{5}{3}\right)$]

(b) Minimum: $\left(1, \frac{3}{2}\right)$ Maximum: (2, 2)

[Notice: it can also be found by using derivatives later on]

(b) (-3, -9)(i) (ii) (1, -4)reflection gives (3, 9)(iii) stretch gives $\left(\frac{3}{2},9\right)$ 11. (a) 4 x Note: reflection in x-axis, correct vertex and all intercepts approximately correct. g(-3) = f(0)f(0) = -1.5(i) (b) translation (accept shift, slide, *etc.*) of $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$ (ii) (c) y = f(x)y = -f(x)y = f(x+3)Domain $-1 \le x \le 4$ $-1 \le x \le 4$ $-4 \le x \le 1$ Range $-4 \le y \le 0.5$ $0.5 \le y \le 4$ $-4 \le y \le 0.5$ 12. (a) $\frac{1}{2}$ (1 -0.:

(a)	g(x)	=2f(x-1))		
	x	0	1	2	3
x	- 1	-1	0	1	2
f(x	-1)	3	2	0	1

g(0) = 2f(-1) = 6 g(1) = 2f(0) = 4

g(2) = 2f(1) = 0 g(3) = 2f(2) = 2

(b) Graph passing through (0, 6), (1, 4), (2, 0), (3, 2)

14. (a)

13.

(b) (c)

	y = f(x)	y = g(x)
Domain	$0 \le x \le 2$	$-3 \le x \le -1$
Range	$1 \le y \le 5$	$-1 \le y \le 3$

15. (a)
$$y = (x-1)^2$$

 $y = 4(x-1)^2$
 $y = 4(x-1)^2 + 3$
(b)

$y = x^2$	(0,0)
$y = (x-1)^2$	(1,0)
$y = 4(x-1)^2$	(1,0)
$y = 4(x-1)^2 + 3$	(1,1)

16. (a) in any order

translated 1 unit to the right stretched vertically by factor 2

(b) METHOD 1

Finding coordinates of image on g

 $(-1, 1) \rightarrow (-1 + 1, 2 \times 1) = (0, 2)$ P is (3, 0) **METHOD 2** $h(x) = 2(x - 4)^2 - 2$ P is (3, 0)

- **17.** (a) (1, 2)
 - (b) $g(x) = 3(x-1)^2 2$ (accept p = 1, q = -2)
 - (c) (1, 2)

18. (a)
$$g(x) = -(x-3)^2 - 4$$
, therefore the maximum point is (3, -4)

(b) f(x) is mapped onto g(x) by a reflection in the x-axis followed by the translation $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

$$y = 2(x-3)^2 + 5$$

(b) (i)
$$k = 2$$

(ii) $p = 3$

(iii)
$$q = 5$$

20.

$$q = 5$$
$$k = 3, p = 4$$

21. (a) (i)
$$h = 3$$
 (ii) $k = 1$
(b) $g(x) = f(x-3) + 1$, $5 - (x-3)^2 + 1$, $6 - (x-3)^2$, $-x^2 + 6x - 3$

- 22. (a) By completing the square or finding the vertex (2,1) $3(x-2)^2 - 1$
 - (b) **METHOD 1** Vertex shifted to (5, 4), $g(x) = 3(x-5)^2 + 4$

METHOD 2

$$g(x) = 3((x-3)-2)^2 - 1 + 5 = 3(x-5)^2 + 4$$

23.

(b)

$$y = 2(x-2)^{2} + 4(x-2) + 7 - 1$$

= 2(x² - 4x + 4) + 4x - 8 + 6
= 2x² - 8x + 8 + 4x - 2
$$\Rightarrow y = 2x^{2} - 4x + 6$$

25.
$$g(x) = f(x-1) - 1 = 2(x-1)^3 - 3(x-1)^2 + (x-1) + 1 - 1 = \dots = 2x^3 - 9x^2 + 13x - 6$$

B. Exam style questions (LONG)

26. (a)
$$f(x) = 3(x^2 + 2x + 1) - 12 - 3x^2 + 6x + 3 - 12 - 3x^2 + 6x - 9$$

(b) (i) vertex is $(-1, -12)$
(ii) $x = -1$ (must be an equation)
(iii) $(0, -9)$
(iv) $3(x + 3)(x - 1) = 0$
(-3, 0), (1, 0)
(c)
(d) $\binom{p}{q} = \binom{-1}{-12}, t = 3$ $(p = -1, q = -12, t = 3)$
27. (a) $(f \circ g)(x) = (x - 1)^2 + 4$ $(x^2 - 2x + 5)$
(b) **METHOD 1**
vertex of $f \circ g$ at $(1, 4)$
adding $\binom{3}{-1}$ to the coordinates
vertex of h at $(4, 3)$
METHOD 2
find $h(x) = ((x - 3) - 1)^2 + 4 - 1, h(x) = (f \circ g)(x - 3) - 1$
 $h(x) = (x - 4)^2 + 3$
vertex of h at $(4, 3)$
(c) $h(x) = (x - 4)^2 + 3 = x^2 - 8x + 16 + 3 = x^2 - 8x + 19$
(d) $x^2 - 8x + 19 = 2x - 6$
 $x^2 - 10x + 25 = 0 \Leftrightarrow (x - 5)^2 = 0$
 $x = 5(p = 5)$
[there is also an alternative method using derivatives which we will study later on]

28. (a)

Notes: The graph of y_2 is y_1 stretched horizontally by s.f. 1/2 (shrink) points of intersection with the x-axis (m/2, 0) and (n/2, 0)

Notes: The graph of y_3 is y_1 shifted k units to the right. points of intersection with the x-axis (m + k, 0) and (n + k, 0)

(c) (i) m/2, n/2

(ii)
$$m+3, n+3$$

(iii) $\frac{m+3}{2}, \frac{n+3}{2}$

EITHER by using transformations **OR** by substitution

For example, for (iii), the solutions are obtained by letting 2x-3 = m and 2x-3 = n

so that
$$x = \frac{m+3}{2}, x = \frac{n+3}{2}$$