Objective: To investigate compound angle formula or identity for sine and cosine functions

Pre-Required Knowledge: Basics of trigonometry, Sine rule and cosine rule.

Starter of the Day

sine rule: $\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}$

There are two right-angled triangles named as PSQ and RSQ with marked angles.
Angle PQS is denoted by \mathbf{A} (black shaded angle) and Angle SPQ = 90-A. Angle RQS is denoted by \mathbf{B} (turquoise shaded angle) \& Angle SRQ=90-B.

\square
Task 1 If P and R are on the opposite side of S then Angle $P Q R$ in terms of A and B

Angle PQR=

Use basics of trigonometry in $\triangle P Q S$ \& figure out sides PS and QS if $\mathrm{PQ}=y$ units. Give your answers in terms of y and angle A.

Work out the sides RS and QS of triangle RQS if $R Q=x$ units.
(give your answers in terms of x and angle B)

$R S=$
QS=

Using above values, simplify the expression for $\sin (A+B)$ only in terms of sine or cosine with angles A and B.

Hint: you should get rid of x and y using $\frac{x}{y}=\frac{\cos (A)}{\cos (B)}$ (using two values of $Q S$)
$\sin (A+B)=$

For $\operatorname{Sin}(A-B)$

Use all results:
if Angle $P Q R=A-B$, then
$P R=$
$Q S=$
$\Rightarrow \frac{x}{y}=$
Now apply sine rule:
$\frac{\sin (A-B)}{P R}=\frac{\sin \left(90^{\circ}-A\right)}{x}$

Simpify and write an expresión for $\sin (A-B)$

$$
\sin (A-B)=
$$

Using all the values you have used for $\sin (A+B)$. let's apply cosine rule since $P R$ is opposite of angle $(P Q R)$ \& x, y are adjacent sides.
so, $\quad \cos (P Q R)=\frac{x^{2}+y^{2}-(P R)^{2}}{2 x y}$

Now simplify

You may need to use the following:

1. $1-\sin ^{2} \theta=\cos ^{2} \theta$
2. $\frac{x}{y}=\frac{\cos (A)}{\cos (B)}$ or $\frac{y}{x}=\frac{\cos (B)}{\cos (A)}$

$$
\cos (A+B)=
$$

What do you think about $\operatorname{Cos}(A-B)$?

$$
\cos (A-B)=
$$

