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NOTES ON HEAT CALCULATIONS 
 
 
HEAT TRANSFER TO (OR FROM) AN OBJECT  
 

Q mc T= ∆                                                                      (1) 
 
Note that this is not a "change  in heat" and there is no such thing as ∆Q. Heat is energy in transit, or 
energy being transferred, and it makes no sense to speak of a change in energy being transferred. It's 
either being transferred or it isn't. Just like there is no such thing as a "change in work." 
 
The factors in Eq(1) are the mass m, the specific heat capacity c, and the temperature difference ∆T. In 
SI units the specific heat is in joules per kilogram per kelvin, or J / (kg K).  Since a temperature difference 
is the same in Kelvins as in degrees Celsius, we can use either measure; degrees C are commonly used. 
 
If the heat Q is positive we say that heat flows into the object, and its temperature is increased. If Q is 
negative, heat has flowed out of the object and its temperature has decreased. Clearly, since the mass 
and specific heat both have positive values, the sign of Q depends only on the sign of ∆T. 
 
Observe that if we solve Eq(1) for the temperature change for some given heat input, we see that the 
temperature change will be inversely proportional to the mass and to the specific heat. So, a larger 
specific heat means that more of the input energy is going into the internal energy of the object without 
increasing the kinetic energy of the molecules. The latter is, of course, directly related to the temperature.  
 
The term "specific heat capacity" is unfortunate, since we cannot store heat. Some other term that implies 
resistance to a change in temperature, like "thermal inertia," might be better. (The term "specific" just 
means that a quantity is normalized to be on a per-unit-mass basis, that is, per kg.) 
 
The "calorie" is another, widely used, unit for heat. This is the amount of heat needed to change the 
temperature of 1 gram of water by one degree Celsius. The calorie is not an SI unit! In SI, energy and 
work are always measured in joules. (Also, the old CGS metric system of units is not part of SI.) 
 
For water, the specific heat is 1 cal / g or 1000 cal / kg, which is convenient when solving problems 
involving water (or liquids that can be considered water). It can be shown that the conversion from 
calories to joules leads to  4.186 J / cal  or  4186 J / kcal ; the latter is used when the mass is given in kg.  
 
 
 
 
HEAT OF FUSION OR VAPORIZATION    (HEAT OF TRANSFORMATION ) 

 

fusion vaporizationQ m h Q m h= ± = ±                                                (2) 

 
This is the energy input needed to change a substance from solid to liquid, or from liquid to gas. This 
energy input does not result in an increase in temperature. This heat is considered positive when it is 
input to the substance (melts) and negative when it is given up by the substance when it solidifies 
(freezes). That is, we must add energy to melt ice, and we must remove energy to freeze water; similarly 
for boiling (positive) and condensing (negative). 
 
This heat of transformation is also referred to as "latent" (or hidden) heat; "hidden" because it is not 
manifested in an increased temperature. The units of latent heat are joules per kilogram (J / kg). 
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SOME NUMERICAL VALUES  
 
specific heat of liquid water 4186         joules per kilogram per degree Celsius (or K) 

specific heat of ice          2090        joules per kilogram per degree Celsius (or K) 

heat of fusion of water     3.35E05    joules per kilogram 

heat of vaporization of water      2.26E06    joules per kilogram 

Note that the specific heat of ice is needed if we had some ice whose temperature was less than 0˚C. As 
it warms up toward 0, this is the specific heat we would use, not the value for liquid water! 
 
 
CALORIMETRY  
 
This is the study of heat flow in a thermally-isolated system. That is, there is no energy input to or lost 
from the objects under consideration other than that contained by the objects themselves. For example, 
suppose we have a well-insulated container, with some water in it, and the container and water are in 
thermal equilibrium; so, they have the same temperature. Then we place a heated object, like a chunk of 
metal taken from a hot oven, into the water. The heat that flows from the metal into the water/container 
system is the source of thermal energy, and we assume that none is lost to the environment. What is the 
final, equilibrium, temperature of this system (the water, the container, and the metal)? 
 
The best way to analyze problems like this is to express the conservation of energy as 

1 2 3 0netQ Q Q Q= + + + =⋯                                                      (3) 

This says that the net algebraic sum of the heat flows between the objects must be zero; it is a "zero-
sum" game! Thermal energy will be lost by some objects, and that same energy will be gained by other 
objects, such that the overall change in this isolated system's energy content is zero. 
 
We can express Eq(3) using Eq(1), to have 

 1 1 1 2 2 2 3 3 3 0f f fm c T T m c T T m c T T     − + − + − + =      ⋯  

where Tf is the final equilibrium temperature of all the objects in the system, and T1 etc. are the initial 
temperatures of the respective objects. Note that all these temperature differences are written as final 
minus initial. The signs of these terms will take care of themselves. Expanding, collecting terms, and 
factoring leads to the solution for the final temperature, for n objects: 
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This is just a weighted average of the initial temperatures. To be a little more general we can observe that 
the mass can be written as the product of the density ρ and the volume V of each object, so that Eq(4) 
expressed a different way is 
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This form can be useful for problems involving liquids, where a volume might be given, not a mass. These 
solutions only apply if there is no phase change (melting, boiling, etc.). 
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SPECIAL CASES  
 
Here are some re-expressions of Eq(4) and (5) for certain commonly-occurring problem types. What 
happens in these is that some parameters are constant and can thus be factored out of the numerator 
and denominator summations in Eq(4) or (5), and then they cancel out. 
 
Two volumes of the same material (e.g., water) 
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Two masses of the same material 
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Two masses of different materials 

1 1 1 2 2 2

1 1 2 2
f

m c T m c T
T

m c m c

+=
+

                                                         (8) 

Many other variations are possible; use Eq(4) or (5) as needed for a specific problem. 
 
 
THE "K EEP ∆T POSITIVE"  APPROACH 
 
Some physics texts use what appears to be a different method for these calculations. In this, the 
fundamental statement is that 

so  that 0gained lost gained lostQ Q Q Q= − =                                 (9) 

Notice that the only way Eq(9) can be true is if both quantities are positive. In fact this is no different than 
Eq(3), the conservation of energy, but it is constructed (and applied) in a way that is potentially confusing. 
We are to ensure that the temperature differences used for Q are always positive. However, consider this 
statement from a college-level physics text: 
 

You may have learned to solve calorimetry problems ... by balancing heat gained with heat lost. 
That approach works in simple problems, but it has two drawbacks. First, you often have to 
"fudge" the signs to make them work. Second, and more serious, you can't extend this 
approach to a problem with three or more interacting systems. Using Qnet = 0 is much preferred.                      
                                                     R. D. Knight, Physics for Scientists and Engineers, Pearson (2004), p532. 

 
We will now show that this method leads to exactly the same solution for the final temperature that we 
derived above, for two objects. Let us assume that object 1 is "hotter." Then we are supposed to write 

 1 1 1 2 2 2f fm c T T m c T T   − = −     

and both temperature differences are positive. The fact is, if we solve this for Tf  by expanding, collecting 
terms, and factoring, just as we did in deriving Eq(4), we will get Eq(8)! And if we choose object 2 as the 
"hotter" one, we get exactly the same result. In the texts that use this method, they do not do the algebra, 
they put in the numbers and create a confusing mess that needs to be solved for Tf. Using Eq(8) is a 
faster, more reliable way to get this job done. And you can see from Eq(4) or (5) that we can find the 
equilibrium temperature Tf for any number of objects, not just two. 
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NEWTON'S LAW OF COOLING                                                        (BONUS MATERIAL - NOT REQUIRED) 
 
It would be interesting to see how the temperature of two objects varies with time. To do this we use 
Newton's Law of Cooling, which says that the rate of change of the temperature difference between an 
object and its surroundings is proportional to the current temperature difference. This is a calculus 
problem, and when we solve it, we can find the time-dependent temperatures. (The solutions for the two 
temperatures involve a function that many of you have not studied yet, so they will not be shown here.) 
 
The graph below shows this time variation for the coffee and milk in a worksheet problem with these 
parameters (the milk is added to the coffee; assume no external gains or losses): 
   
          Coffee:   m1 = 0.15 kg    c1 = 4187     T1 = 70 C        Milk:  m2 = 0.01 kg     c2 = 3800     T2 = 5 C 
 
Using this information in Eq(8), we find the final temperature 
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This temperature is the horizontal dotted line in the figure below. We see, as we would expect, that the 
milk temperature rises dramatically and the coffee temperature drops only slightly. The time scale is 
based on an unknown parameter; this was just picked arbitrarily. We could do an experiment to gather 
some data that could be used to estimate a more physically-realistic value for that parameter. 
 
Notice in the graph that the slope of the curves is not constant-- it is steepest at the start, when the 
temperature difference is largest. As the temperature difference becomes smaller, the slope approaches 
zero (a horizontal line). This slope is the rate of change of temperature, sort of like the slope of a position 
vs. time graph is the velocity. Same idea. 
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