Given above is a right triangle named $\triangle \mathrm{TEH}$. Assume that $\overline{E B}$ is the altitude to the hypotenuse $\overline{T H}$. Complete the table below.

Triangle	Right Angles	Hypotenuse	Acute Angles	Shorter Leg	Longer Leg
$\triangle \mathrm{TEH}$	$\angle \mathrm{TEH}$	$\overline{\mathrm{TH}}$			
$\triangle \mathrm{EBT}$					
$\triangle \mathrm{EBH}$					

Using the rule of similarity on right triangles, complete the following ratios below represented by their line segments.
$\triangle \mathrm{TEH} \sim \triangle \mathrm{EBT} \rightarrow \frac{\overline{E B}}{\overline{B T}}=?$
$\triangle \mathrm{TEH} \sim \triangle \mathrm{EBH} \rightarrow \frac{\overline{E H}}{\overline{T H}}=?$
$\triangle \mathrm{EBH} \sim \triangle \mathrm{EBT} \rightarrow \frac{\overline{T H}}{\overline{E T}}=?$
Answer the following questions to satisfy the conditions of the similarity on right triangles.

1. If $c=3$ and $n=12$, find b.
2. If $c=6$ and $n=18$, find y.
3. If $n=8$ and $c=6$, find a.
