Given above is a right triangle named \triangle TEH. Assume that \overline{EB} is the altitude to the hypotenuse \overline{TH} . Complete the table below.

Triangle	Right Angles	Hypotenuse	Acute Angles	Shorter Leg	Longer Leg
\triangle TEH	∠TEH	\overline{TH}			
\triangle EBT					
\triangle EBH					

Using the rule of similarity on right triangles, complete the following ratios below represented by their line segments.

$$\triangle \text{ TEH} \sim \triangle \text{ EBT} \rightarrow \frac{\overline{EB}}{\overline{BT}} = ?$$
$$\triangle \text{ TEH} \sim \triangle \text{ EBH} \rightarrow \frac{\overline{EH}}{\overline{TH}} = ?$$
$$\triangle \text{ EBH} \sim \triangle \text{ EBT} \rightarrow \frac{\overline{TH}}{\overline{ET}} = ?$$

Answer the following questions to satisfy the conditions of the similarity on right triangles.

1. If
$$c = 3$$
 and $n = 12$, find *b*.

- 2. If c = 6 and n = 18, find *y*.
- 3. If *n*=8 and *c*=6, find *a*.